Relaxation of the Temperature of a Plate Placed in a Medium with a Lower Temperature

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2017, Vol. 3. №4

Title: 
Relaxation of the Temperature of a Plate Placed in a Medium with a Lower Temperature


For citation: Khusainov I. G. 2017. “Relaxation of the Temperature of a Plate Placed in a Medium with a Lower Temperature”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no 4, pp. 132-141. DOI: 10.21684/2411-7978-2017-3-4-132-141

About the author:

Ismagilyan G. Khusainov, Dr. Sci. (Phys.-Math.), Professor, Sterlitamak branch of Bashkir State University; ivt30@mail.ru

Abstract:

The present study considers the problem of cooling a perfectly heat-conducting plate in thermal contact with a stationary medium with uniform distribution of lower temperature than the initial plate’s temperature. An integral equation is obtained that describes the relaxation of the dimensionless plate temperature and depends only on one self-similar variable. An exact analytic solution of the integral equation is found, from which asymptotic formulas valid for small and large values of the dimensionless time are obtained with controlled accuracy. The analysis of graphs obtained with the help of an analytical solution and asymptotic formulas is performed. An exact analytical solution describing the temperature field of the medium around the plate is examined.

References:

  1. Gunkin I.A., Gunkin Yu.A. 1998. “Opredelenie texnologiseckix parametrov zakalki neogranisennoi plastini” [Determination of Technological Parameters of Quenching of an Unlimited Plate]. Mathematical modeling in engineering and financial-economic problems, pp. 78-82. Dnipropetrovsk: Sich.
  2. Ditkin V. A., Prudnikov A. P. 1965. Cpravosnik po operasionnomy icsicleniey [Handbook of Operational Calculus]. Moscow: Higher School.
  3. Carslow G., Yeager D. 1948. Operasionnie metodi v prikladnoi matematike [Operational Methods in Applied Mathematics]. Translated from English by M. M. Litvinova, edited by M. S. Gornshteyn. Moscow: Gosudarstvennoe izdatel'stvo inostrannoy literatury.
  4. Carslow G., Yeager D. 1964. Teploprovodnoct tverdix tel [Thermal Conductivity of Solids]. Moscow: Nauka.
  5. Kartashov E. M. 2001. Analitiseckie metodi v teorii teploprovodnosti tverdix tel [Analytical Methods in the Theory of Thermal Conductivity of Solids]. Moscow: Higher School.
  6. Kartashov E. M. 1979. Analitiseckie metodi v teploprovodnosti tverdix tel [Analytical Methods in the Thermal Conductivity of Solids]. Moscow: Higher School.
  7. Kutateladze S. S. [1965] 1979. Osnovi teorii teploobmena. [Fundamentals of the Theory of Heat Transfer]. 5th edition, revised. Moscow: Atomizdat.
  8. Lykovo A. V. 1967. Teoria teploprovodnosti. [Theory of Heat Conductivity]. Moscow: Higher School.
  9. Salakhutdinov G. M. 1982. Teplovaya zashita v kocmiseckoi texnike [Thermal Protection in Space Technology]. Moscow: Znanie.
  10. Tikhonov A. N., Samarskii A. A 1972. Uravnenie matematiseckoi fiziki. [Equations of Mathematical Physics]. Moscow: Nauka.
  11. Shagapov V. Sh., Khusainov I. G., Khafizov R. M. 2006. “Relakcasia davlenia v polocti, okrygennoi porictoi i pronisaemoi credoi, pri opreccovke vvedeniem gaza” [Pressure Relaxation in a Hole Surrounded by Porous and Permeable Rock in Hole Pressure Tests with Gas Injection]. Journal of Applied Mechanics and Technical Physics. vol. 47. no 1. pp. 91-98. DOI: 10.1007/s10808-006-0012-5
  12. Boelter L. M. K., Boelter L. M. K., Cherry V. H., Johnson H. A., Martinelli R. C. 1948. Heat Transfer Notes. Berkeley: University of California Press.
  13. McAdams W. H. 1954. Heat Transmission. New York: McGraw-Hill Book Company, Inc.