Release:
2024. Vol. 10. № 3 (39)About the authors:
Alexander N. Busygin, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Senior Researcher, Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; a.n.busygin@utmn.ru, https://orcid.org/0000-0002-3439-8067Abstract:
A non-stationary one-dimensional physico-mathematical model of the mass transfer of oxygen vacancies and trapped electrons under a constant electric field is presented. The model provides a more accurate determination of the temperature effect on the electrophysical properties of a metal oxide memristor in comparison with the stationary model. Unlike the known models, the new one includes non-stationary continuity equations for the concentrations and current density of trapped electrons. The developed model correctly considers transient processes that occur under the conditions of measuring the current-voltage characteristic of the memristor at different voltage sweep rates. The obtained profiles of vacancy concentrations using the developed non-stationary and known stationary models are quantitatively different and have a strong dependence on the temperature of the active layer of the memristor. Significant differences in the distribution of vacancy concentrations across the film thickness are observed at a film temperature of 600 K. The results show that the non-stationary model more accurately reproduces the extoperimental current-voltage characteristic of the manufactured memristor, allowing to estimate the switching time to a stable state and to analyze the process of resistive switching of the memristor at different voltage sweep rates. The developed model is helpful in numerical simulation of signal processing routines in large memristor arrays used in neuromorphic devices.Keywords:
References:
Ebrahim, A. H., & Udovichenko, S. Yu. (2020). Mathematical modeling of resistive states and dynamic switching of a metal oxide memristor. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 6(2), 127–144. https://doi.org/10.21684/2411-7978-2020-6-2-127-144 [In Russian]
Ebrahim, A. H. A., Busygin, A. N., & Udovichenko, S. Yu. (2022). Mathematical modeling of memristor resistive switching based on mass transfer full model of oxygen vacancies and ions. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 8(2), 198–214. https://doi.org/10.21684/2411-7978-2022-8-2-198-214 [In Russian]
Basnet, P., Pahinkar, D. G., West, M. P., Perini, C. J., Graham, S., & Vogel, E. M. (2020). Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation. Journal of Materials Chemistry C, 8(15), 5092–5101. http://dx.doi.org/10.1039/C9TC06736A
Busygin, A. N., Udovichenko, S. Yu., Ebrahim, A. H. A., Bobylev, A. N., Gubin, A. A. (2023). Mathematical model of metal–oxide memristor resistive switching based on full physical model of heat and mass transfer of oxygen vacancies and ions. physica status solidi (a), 220(11), Article 2200478. https://doi.org/10.1002/pssa.202200478
Chernov, A. A., Islamov, D. R., Pil’nik, A. A., Perevalov, T. V., & Gritsenko, V. A. (2017). Three-dimensional non-linear complex model of dynamic memristor switching. ECS Transactions, 75(32), 95–104. https://dx.doi.org/10.1149/07532.0095ecst
Dirkmann, S., Kaiser, J., Wenger, C., & Mussenbrock, T. (2018). Filament growth and resistive switching in hafnium oxide memristive devices. ACS Applied Materials & Interfaces, 10(17), 14857–14868. https://doi.org/10.1021/acsami.7b19836
Graves, C. E., Dávila, N., Merced-Grafals, E. J., Lam, S.-T., Strachan, J. P., & Williams, R. S. (2017). Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable. Applied Physics Letters, 110(12), Article 123501. https://doi.org/10.1063/1.4978757
Islamov, D. R., Gritsenko, V. A., & Chin, A. (2017). Charge transport in thin hafnium and zirconium oxide films. Optoelectronics, Instrumentation and Data Processing, 53(2), 184–189. https://doi.org/10.3103/S8756699017020121
Kim, S., Kim, S.-J., Kim, K. M., Lee, S. R., Chang, M., Cho, E., Kim, Y.-B., Kim, C. J., In Chung, U., & Yoo, In-K. (2013). Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific Reports, 3(1), Article 1680. https://doi.org/10.1038/srep01680
Kim, S., Choi, S. H., & Lu, W. (2014). Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano, 8(3), 2369–2376. https://doi.org/10.1021/nn405827t
Kuzmichev, D. S., & Markeev, A. M. (2021). Neuromorphic properties of forming-free non-filamentary TiN/Ta2O5/Ta structures with an asymmetric current–voltage characteristic. Nanobiotechnology Reports, 16(6), 804–810. https://doi.org/10.1134/S2635167621060136
Larentis, S., Nardi, F., Balatti, S., Gilmer, D. C., & Ielmini, D. (2012). Resistive switching by voltage-driven ion migration in bipolar RRAM — Part II: Modeling. IEEE Transactions on Electron Devices, 59(9), 2468–2475. https://doi.org/10.1109/TED.2012.2202320
Mazady, A., & Anwar, M. (2014). Memristor: Part I — The underlying physics and conduction mechanism. IEEE Transactions on Electron Devices, 61(4), 1054–1061. https://doi.org/10.1109/TED.2014.2304436
Noman, M., Jiang, W., Salvador, P. A., Skowronski, M., & Bain, J. A. (2011). Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Applied Physics A, 102(4), 877–883. https://doi.org/10.1007/s00339-011-6270-y
Pahinkar, D. G., Basnet, P., West, M. P., Zivasatienraj, B., Weidenbach, A., Doolittle, W. A., Vogel, E., & Graham, S. (2020). Experimental and computational analysis of thermal environment in the operation of HfO2 memristors. AIP Advances, 10(3), Article 035127. https://doi.org/10.1063/1.5141347
Parit, A. K., Yadav, M. S., Gupta, A. K., Mikhaylov, A., & Rawat, B. (2021). Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory. Chaos, Solitons & Fractals, 145, Article 110818. https://doi.org/10.1016/j.chaos.2021.110818
Patil, P. J., Ahir, N. A., Yadav, S., Revadekar, C. C., Khot, K. V., Kamat, R. K., Dongale, T. D., & Kim, D. K. (2020). Effect of conductive filament temperature on ZrO2 based resistive random access memory devices. Journal of Nano- and Electronic Physics, 12(2), Article 02008. https://doi.org/10.21272/JNEP.12(2).02008
Pil’nik, A. A., Chernov, A. A., & Islamov, D. R. (2020). Charge transport mechanism in dielectrics: drift and diffusion of trapped charge carriers. Scientific Reports, 10(1), Article 15759. https://doi.org/10.1038/s41598-020-72615-1
Sato, Y., Kinoshita, K., Aoki, M., & Sugiyama, Y. (2007). Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model. Applied Physics Letters, 90(3), Article 033503. https://doi.org/10.1063/1.2431792
Shen, W., Kumar, S., & Kumar, S. (2021). Experimentally calibrated electro-thermal modeling of temperature dynamics in memristors. Applied Physics Letters, 118(10), Article 103505. https://doi.org/10.1063/5.0039797