The multilateral well model with complete vertical opening of naturally fractured reservoir

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 3 (35)

Title: 
The multilateral well model with complete vertical opening of naturally fractured reservoir


For citation: Maykov, D. N., & Makarov, S. S. (2023). The multilateral well model with complete vertical opening of naturally fractured reservoir. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(3), 100–116. https://doi.org/10.21684/2411-7978-2023-9-3-100-116

About the authors:

Dmitriy N. Maykov, Specialist, Automation Department, Siam Master, Izhevsk, Russia, dimaMS2@mail.ru
Sergey S. Makarov, Postgraduate Student, Senior Researcher, Central European Forest Experimental Station (Kostroma); makarov_serg44@mail.ru

Abstract:

A new analytical solution of the diffusivity equation for a mathematical model of a multilateral which penetrates a double-porosity reservoir vertically along the entire thickness has been obtained. The solution of the diffusivity equations is given in the Laplace space and was derived with the assumption of a well constant flow rate and the absence of friction pressure losses in the channels. The analytical solution of the diffusivity equation, written taking into account the presence of a fracture system and pore matrices, contains a modified Bessel function of the first and second kind of zero order and is presented in the form of a matrix equation. The matrix equation is solved using the LU decomposition, and the transfer of the dimensionless pressure from the Laplace space to the Cartesian coordinate system is performed using the Stehfest algorithm. On the basis of the developed numerical algorithm, a parametric analysis of the multilateral well model in a formation with double porosity was carried out. The reservoir flow properties, the parameters of the multilateral well branches, the double porosity model parameters, such as the storativity ratio and the transmissivity ratio, vary. The difference between the calculated parameters of the multilateral well model in a homogeneous formation and in a formation with double porosity is shown. The influence of the storativity ratio and the transmissivity ratio on the pressure drop and the derivative of the pressure drop in the well has been established. It is shown that when the transmissivity ratio decreases by a factor of 10, the start time of the transient regime also increases by a factor of 10. A decrease in the storativity ratio value from 0.01 to 0.005 leads to an increase in the pressure drop at the beginning of the well operation by 14.3% and the pressure drop derivative minimum value of the transient regime reduces by 1.92 times. When the storativity ratio decreases to 0.001, the value of the pressure drop increases by 48.2% and the pressure drop derivative minimum value of the transient regime decreases by 7.5 times.

References:

Blonsky, A. V., Mitrushkin, D. A., & Savenkov, E. B. (2017). Discrete fracture network model­ling: Physical and mathematical model. Keldysh Institute Preprints, (65). https://doi.org/­10.20948/prepr-2017-65 [In Russian]

Maykov, D. N., Vasilyev, R. S., & Vasilyev, D. M. (2018). The technique of revealing the response during well interference test in the conditions of a high noise level of pressure and the presence of pressure trends. Oil Industry, (9), 98–101. https://doi.org/10.24887/0028-2448-2018-9-98-101 [In Russian]

Maikov, D. N., & Borkhovich, S. Yu. (2019). Interference test research. Neft. Gaz. Novacii, (2), 30–31. [In Russian]

Maikov, D. N., & Borkhovich, S. Yu. (2020). Analytical model of multilateral well with complete vertical opening. Neft. Gaz. Novacii, (11), 61–65. [In Russian]

Maykov, D. N., Isupov, S. V., Makarov, S. S., & Anikanov, A. S. (2021). The efficient method for pressure calculation at variable rate. Oil Industry, (9), 105–107. https://doi.org/10.24887/0028-2448-2021-9-105-107 [In Russian]

Maykov, D. N., & Makarov, S. S. (2022). Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results. Matematicheskoe mode­lirovanie, 34(9), 71–82. https://doi.org/10.20948/mm-2022-09-05 [In Russian]

Bourdet, D., Whittle, T. M., Douglas, A. A., & Pirard, V. M. (1983). A new set of type curves simplifies well test analysis. World Oil, 196, 95–106.

Cinco-Ley, H., & Samaniego V., F. (1989, October 8–11). Use and misuse of the superposition time function in well test analysis [Conference paper SPE-19817-MS]. SPE Annual Technical Conference and Exhibition, San Antonio, Texas. https://doi.org/10.2118/19817-MS

Earlougher, R. C., & Ramey, H. J. (1973). Interference analysis in bounded systems. Journal of Canadian Petroleum Technology, 12(4), PETSOC-73-04-04. https://doi.org/10.2118/73-04-04

Fokker, P. A., Renner, J., & Verga, F. (2012, June 4–7). Applications of harmonic pulse testing to field cases [Conference paper SPE-154048-MS]. SPE Europec/EAGE Annual Conference, Copenhagen, Denmark. https://doi.org/10.2118/154048-MS

Lee, J., Rollins, J. B., & Spivey, J. P. (2003). Pressure transient testing. Society of Petroleum Engineers. https://doi.org/10.2118/9781555630997

Mittal, R. C., & Al-Kurdi, A. (2002). LU-decomposition and numerical structure for solving large sparse nonsymmetric linear systems. Computers & Mathematics with Applications, 43(1–2), 131–155. https://doi.org/10.1016/S0898-1221(01)00279-6

Mohammed, I., Olayiwola, T. O., Alkathim, M., Awotunde, A. A., & Alafnan, S. F. (2021). A review of pressure transient analysis in reservoirs with natural fractures, vugs and/or caves. Petroleum Science, 18(1), 154–172. https://doi.org/10.1007/s12182-020-00505-2

Nie, R.-S., Meng, Y.-F., Jia, Y.-L., Zhang, F.-X., Yang, X.-T., & Niu, X.-N. (2012). Dual porosity and dual permeability modeling of horizontal well in naturally fractured reservoir. Transport in Porous Media, 92(1), 213–235. https://doi.org/10.1007/s11242-011-9898-3

Ozkan, E., & Raghavan, R. (1991a). New solutions for well-test-analysis problems: Part 1 — Analytical considerations. SPE Formation Evaluation, 6(3), 359–368. https://doi.org/10.­2118/18615-PA

Ozkan, E., & Raghavan, R. (1991b). New solutions for well-test-analysis problems: Part 2 — Computational considerations and applications. SPE Formation Evaluation, 6(3), 369–378. https://doi.org/10.2118/18616-PA

Ozkan, E., Yildiz, T., & Kuchuk, F. J. (1998). Transient pressure behavior of dual-lateral wells. Society of Petroleum Engineers Journal, 3(2), 181–190. https://doi.org/10.2118/38670-PA

Permadi, A. K. (2009). Development of solution to the diffusivity equation with prescribed-pressure boundary condition and its applications to reservoirs experiencing strong water influx. Far East Journal of Applied Mathematics, 37(1), 91–102.

Poe, B. D., Elbel, J. L., & Blasingame, T. A. (1994, September 25–28). Pressure transient behavior of a finite conductivity fracture in infinite-acting and bounded reservoirs [Conference paper SPE-28392-MS]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana. https://doi.org/10.2118/28392-MS

Salas, J. R., Clifford, P. J., & Jenkins, D. P. (1996, May 22–24). Multilateral well performance prediction [Conference paper SPE-35711-MS]. SPE Western Regional Meeting, Anchorage, Alaska. https://doi.org/10.2118/35711-MS

Satter, A., & Iqbal, Gh. M. (2016). 9 — Fundamentals of fluid flow through porous media. In Reservoir engineering: The fundamentals, simulation, and management of conventional and unconventional recoveries (pp. 155–169). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-800219-3.00009-7

Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM, 13(1), 47–49. https://doi.org/10.1145/361953.361969

Stewart, G. (2011). Chapter 9. Dual porosity systems. In Well test design and analysis (pp. 549–603). PennWell.

Walker, A. C. (1968, March 27–29). Estimating reservoir pressure using the principle of superposition [Conference paper SPE-2324-MS]. Regional Technical Symposium, Dhahran, Saudi Arabia. https://doi.org/10.2118/2324-MS

Warren, J. E., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of Petro­leum Engineers Journal, 3(3), 245–255. https://doi.org/10.2118/426-PA