Analytical solution of heat equation taking into account convection with isothermal boundary conditions

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 3 (35)

Title: 
Analytical solution of heat equation taking into account convection with isothermal boundary conditions


For citation: Ganopolskij, R. M. (2023). Analytical solution of heat equation taking into account convection with isothermal boundary conditions. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(3), 66–82. https://doi.org/10.21684/2411-7978-2023-9-3-66-82

About the author:

Rodion M. Ganopolskij, Cand. Sci. (Phys.-Math.), Head of the Department of Modeling of Physical Processes and Systems, Institute of Physics and Technology, University of Tyumen, Tyumen, Russia, r.m.ganopolskij@utmn.ru

Abstract:

The problem of determining the distribution of heat through the reservoir constantly arises in the production of hydrocarbons. Changes of temperature affect the viscosity of oil and consequently the rate of its production. Taking into account the filtration process, additional terms appear in the classical heat conduction equation, including nonlinear ones. Various numerical schemes are used to solve the modified equations. The question of the convergence of such methods often arises. The task of this work is to obtain an analytical solution of the heat equation in cases where it is possible, in order to further compare numerical solutions with them.

References:

Gilmanov, A. Ya., & Shevelev, A. P. (2021). Modeling of steam-cyclic impact on oil reservoirs taking into account convective flows. Experimental methods for studying reservoir systems: Problems and solutions (p. 82). [In Russian]

Gladkov, A. L. (1996). Unbounded solutions of the nonlinear heat-conduction equation with strong convection at infinity. Journal of Computational Mathematics and Mathematical Physics, 36(10), 73–86. [In Russian]

Doroshevich, E. A. (2009). Solutions of the heat equation for calculating temperature conditions in rooms. Science to education, production, economics: Proceedings of the 7th International scientific and technical conference in 3 vols.: Vol. 2 (p. 381). Belarusian National Technical University. [In Russian]

Dulnev, G. N. (2012). Theory of heat and mass transfer. NRU ITMO. [In Russian]

Jumayev, Ju., & Tosheva, M. M. (2022). Simulation of stationary thermal conductivity under free convection in a limited volume. Universum: Engineering Sciences, (4–3), 34–37. [In Russian]

Karpovich, D. S., Susha, O. N., Korovkina, N. P., & Kobrinets, V. P. (2015). Analytical and nume­rical methods for solving the heat equation. Proceedings of BSTU. Series 3: Physical and Mathematical Sciences and Informatics, (6), 122–127. [In Russian]

Krainov, A. Yu., Ryzhykh, Yu. N., & Timokhin, A. M. (2009). Numerical methods in heat transfer problems. Tomsk State University. [In Russian]

Krainov, A. Yu., & Minkov, L. L. (2016). Numerical methods for solving problems of heat and mass transfer. STT. [In Russian]

Krainov, A. Yu., & Moiseeva, K. M. (2017). Convective heat transfer and heat transfer. STT. [In Russian]

Petrovsky, I. G. (2009). Lectures on the theory of ordinary differential equations. Fizmatlit. [In Russian]

Polyansky, S. D. (2019). Solving two-dimensional partial differential equations by numerical methods. New information technologies in scientific research: Proceedings of the 24th All-Russian scientific and technical conference (pp. 68–70). Ryazan State Radio Engineering University named after V. F. Utkin. [In Russian]

Popov, M. I., & Soboleva, E. A. (2016). The approximate analytical solution of the internal problem of conductive and laminar free convection. Proceedings of the Voronezh State University of Engineering Technologies, (4), 78–84. https://doi.org/10.20914/2310-1202-2016-4-78-84 [In Russian]

Tikhonov, A. N., & Samarsky, A. A. (2004). Equation of mathematical physics (7th ed.). Moscow State University, Nauka. [In Russian]

Chernyshov, V. E., & Pivovarova, I. I. (2020). Numerical solution of the thermal conductivity equation on the example of calculating the loss of the heat amount when injecting of hot water into the well. Student of the year 2020: Collection of articles of the 15th International research competition (pp. 8–13). Nauka i Prosveshchenie. [In Russian]

Shatrov, O. A., Shcheritsa, O. V., & Mazhorova, O. S. (2018). Parallel algorithm for solving the equations of thermogravitational convection. Keldysh Institute Preprints, (239), 1–21. https://doi.org/10.20948/prepr-2018-239 [In Russian]

Abdulla — Al — Mamun, Md. Shajib Ali, & Md. Munnu Miah. (2018). A study on an analytic solution 1D heat equation of a parabolic partial differential equation and implement in computer programming. International Journal of Scientific & Engineering Research, 9(9), 913–921.

Babayar-Razlighi, B. (2023). Numerical solution of heat equation with specification of heat flux on the boundary by the Legendre Wavelets. Iranian Conference on Mathematical Physics.

Cannon, J. R. (1984). The one-dimensional heat equation. Cambridge University Press.