On the application of the LET-model for the approximation of core relative phase permeabilities

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 4 (32)

Title: 
On the application of the LET-model for the approximation of core relative phase permeabilities


For citation: Dubrovin M. G., Vokina V. R., Yadryshnikova O. A. 2022. “On the application of the LET-model for the approximation of core relative phase permeabilities”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 4 (32), pp. 144-162.

About the authors:

Mikhail G. Dubrovin, Leading Specialist, Intelligent Systems Development Department, Tyumen Petroleum Research Center; mgdubrovin@tnnc.rosneft.ru; ORCID: 0000-0002-8580-1303

Victoria R. Vokina, Leading Specialist, Tyumen Petroleum Research Center, Tyumen, Russia; Master Student, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; vrvokina@tnnc.rosneft.ru, https://orcid.org/0000-0002-9651-1758


Olga A. Yadryshnikova, Cand. Sci. (Tech.), Chief Manager, Algorithmization Department, Tyumen Petroleum Research Center; oayadrishnikova@tnnc.rosneft.ru

Abstract:

The article deals with the problem of adequate interpretation of core relative phase permeabilities and the use of the LET-model in application to this problem. Some existing analytical dependencies for the interpretation of laboratory studies of the OFP are briefly analyzed: the Corey model, the Sigmund and McCaffery model, the Chierici model, the LET-model. The advantage of the LET-model and the high evaluation of this model in independent studies of the authors are described. In the process of preliminary analysis, the authors of the article revealed that the non-trivial issue of determining the adjustable coefficients of the model using mathematical methods was not sufficiently covered, which became the central object of the work. Further, the application of the LET-model is formalized and the methodology for determining the adjustable coefficients of the model (L, E and T) is described. The task of selecting model parameters is interpreted as a multidimensional optimization problem. Also, a class of nonlinear least squares methods was defined to solve the problem. Several common numerical optimization methods for selecting the coefficients of the model are considered: the brute-force search method, the Levenberg-Marquardt algorithm method, the trust region method. Computational experiments were carried out to assess their applicability and comparative analysis of optimization algorithms. Based on the results of the experiments, it was concluded that the method of confidence domains is suitable for practical application, since they converge to the optimal solution quickly enough and demonstrates high accuracy in the selection of coefficients L, E, T. The final part of the article demonstrates the difference between the LET-model and the basic Corey model when approximating core relative phase permeabilities.

References:

  1. Berdyshev V. I., Petrak L. V. 1999. Approximation of functions, compression of numerical information, applications. Yekaterinburg: IMM UB RAS. 296 p. [In Russian]
  2. Bolshakova L. V., Grachev A. V. 2016. “The use of average error of approximation as a criterion of adequacy of regression model”. Regional Informatics and Information Security, pp. 162-164. [In Russian]
  3. Zakiev D. R., Ponomareva D. V. 2018. “Creation of a gas condensate field hydrodynamic model”. International Student Scientific Herald, no. 6. Accessed 8 November 2022. https://eduherald.ru/ru/article/view?id=19292 [In Russian]
  4. Zakharova E. M., Minashina I. K. 2014. “Review of multidimensional optimization techniques”. Information Processes, vol. 14, no. 3, pp. 256-274. [In Russian]
  5. Kolomiets L. V., Ponikarova N. Yu. 2017. Least squares method: Method. Instructions. Samara: Publishing House of Samara University. 32 p. [In Russian]
  6. Polyak B. T. 2006. “Newton’s method and its role in optimization and computational mathematics”. Proceedings of the Institute of System Analysis of the Russian Academy of Sciences, vol. 28, pp. 44-62. [In Russian]
  7. Rodivilov D. B., Grechneva O. M., Natchuk N. Yu., Rusanov A. S. 2021. “Petrophysical basis for modeling expelled water in gas saturated reservoirs of the Achimov sequence”. Exposition Oil & Gas, no. 6, pp. 41-45. [In Russian]
  8. Stepanov S. V., Shabarov A. B. 2021. “Towards the presence of regularities between
    the function of interfacial interaction and the filtration capacity properties”. Tyumen
    State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 1 (25), pp. 92-111. DOI: 10.21684/2411-7978-2021-7-1-92-111 [In Russian]
  9. Dobrynin V. M., Kovalev A. G., Kuznetsov A. M., Chernoglazov V. N. 1988. Phase permeability of oil and gas reservoirs. Moscow: VNIIOENG. 56 p. [In Russian]
  10. Khairullin A. A. 2021. “Development and research of a model of two-phase non-piston displacement of oil by water”. Cand. Sci. (Tech.) diss. Tyumen, 147 p. [In Russian]
  11. Teptin G. M., Khutorova O. G., Stenin Yu. M. et al. 2013. Numerical methods in physics and radiophysics: An educational and methodical manual. Kazan: Kazan Federal University. 38 p. [In Russian]
  12. Chierici G. L. 1984. “Novel relations for drainage and imbibition relative permeabilities”. Society of Petroleum Engineers Journal, vol. 24, no. 3, pp. 275-276. DOI: 10.2118/10165-PA
  13. Corey A. T. 1954. “The interrelation between gas and oil relative permeabilities”. Producers Monthly, vol. 19, no. 1, pp. 38-41.
  14. Gratton S., Lawless A. S., Nichols N. K. 2007. “Approximate Gauss-Newton methods for nonlinear least squares problems”. Society for Industrial and Applied Mathematics Journal on Optimization, vol. 18, no. 1, pp. 106-132. DOI: 10.1137/050624935
  15. Johnson M. L. 2008. “Nonlinear least‐squares fitting methods”. Methods in Cell Biology, vol. 84, pp. 781-805. DOI: 10.1016/S0091-679X(07)84024-6
  16. Kelley C. T. 1999. Iterative methods for optimization. Society for industrial and applied mathematics. XV + 171 p. DOI: 10.1137/1.9781611970920
  17. Lomeland F., Ebeltoft E., Thomas W. H. 2005. “A new versatile relative permeability correlation”. Paper presented at the International Symposium of the Society of Core Analysts (21-25 August 2005, Toronto, Canada). Paper SCA2005-32. Accessed 8 November 2022. http://jgmaas.com/SCA/2005/SCA2005-32.pdf
  18. Lomeland F., Orec A. S. 2018. “Overview of the LET family of versatile correlations for flow functions”. Paper presented at the International Symposium of the Society of Core Analysts (27-30 August 2018, Trondheim, Norway). Paper SCA2018-056. Accessed 8 November 2022. http://jgmaas.com/SCA/2018/SCA2018-056.pdf
  19. Moghadasi L., Guadagnini A., Inzoli F., Bartosek M. 2015. “Interpretation of two-phase relative permeability curves through multiple formulations and Model Quality criteria”. Journal of Petroleum Science and Engineering, vol. 135, pp. 738-749.
    DOI: 10.1016/j.petrol.2015.10.027
  20. Moré J. J. 1978. “The Levenberg-Marquardt algorithm: Implementation and theory”. Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 105-116.
    DOI: 10.1007/BFb0067700
  21. Sakhaei Z., Azin R., Osfouri S. 2016. “Assessment of empirical/theoretical relative permeability correlations for gas-oil/condensate systems”. Proceedings of the 1st Biennial Persian Gulf Oil, Gas and Petrochemical Conference (20 April 2016, Bushehr, Iran). 11 p. Accessed 8 November 2022. https://www.sid.ir/FileServer/SE/386E20160106.pdf
  22. Sigmund P. M., McCaffery F. G. 1979. “An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media (includes associated papers 8028 and 8777”. Society of Petroleum Engineers Journal, vol. 19, no. 1, pp. 15-28. DOI: 10.2118/6720-PA
  23. Yuan Y.-X. 2000. “A review of trust region algorithms for optimization”. ICIAM 99: Proceedings of the 4th International Congress on Industrial and Applied Mathematics (5-9 July 1999, Edinburgh, Scotland), pp. 271-282.