Improving the quality of reservoir pressure gridding by regularizing the CRMP-TM history matching problem

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 4 (32)

Title: 
Improving the quality of reservoir pressure gridding by regularizing the CRMP-TM history matching problem


For citation: Beckman А. D. 2022. “Improving the quality of reservoir pressure gridding by regularizing the CRMP-TM history matching problem”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 4 (32), pp. 125-143.

About the author:

Alexander D. Bekman, Cand. Sci. (Phys.-Math.), Chief Project Engineer, Tyumen Petroleum Research Center; ORCID: 0000-0002-5907-523Xadbekman@rosneft.ru

Abstract:

To enable rapid decision making in the process of hydrocarbon field development, experts are increasingly moving away from slow 3D hydrodynamic models in favor of simpler proxy-models. In particular, to solve such an important task of development analysis as reservoir pressure gridding, the CRMP-TM proxy-model was previously proposed. This proxy model allows estimating the values of reservoir pressures for wells for each step of the simulated time interval. The achieved pressure values may be used as input data for the problem of reservoir pressure gridding. This article provides examples of situations in which the previously published methodology of using the CRMP-TM model is not applicable. A new technique has been proposed that makes it possible to expand the applicability of this model to the considered situations, as well as to make the estimates of formation pressure values for injection wells more accuracy. The results of numerical experiments are presented, confirming that the accuracy of the estimates increases when using the new technique.

References:

  1. Aziz K., Settari A. 1979. Petroleum Reservoir Simulation. Applied Science Publishers. 476 p.
  2. Beckman A. D., Zelenin D. V. 2021. “Application of advanced CRMP for reservoir pressure mapping”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 4 (28), pp. 163-180. DOI: 10.21684/2411-7978-2021-7-4-163-180
    [In Russian]
  3. Beckman A. D., Stepanov S. V., Ruchkin A. A., Zelenin D. V. 2019. “A new algorithm for finding CRM-model coefficients”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no. 3, pp. 164-185. DOI: 10.21684/2411-7978-2019-5-3-164-185 [In Russian]
  4. Kosyakov V. P., Gubaidullin A. A., Legostaev D. Yu. 2019. “The method for modeling the development of a gas field on the basis of a hierarchy of mathematical models”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no. 3, pp. 69-82. DOI: 10.21684/2411-7978-2019-5-3-69-82 [In Russian]
  5. Pospelova T. A., Zelenin D. V., Zhukov M. S., Beckman A. D., Ruchkin A. A. 2020. “Water cut system optimization based on CRM model”. Oilfield Engineering, no. 7 (619), pp. 5-10. DOI: 10.30713/0207-2351-2020-7(619)-5-10 [In Russian]
  6. Pospelova Т. А., Zelenin D. V., Ruchkin А. А., Beckman A. D. 2020. “Application of CRM models for analysis of waterflood performance”. Neftyanaya Provintsiya, no. 1 (21), pp. 97-108. DOI: 10.25689/NP.2020.1.97-108 [In Russian]
  7. Stepanov S. V. 2005. “History matching of hydrodinamics model of oil bed on basis of variational problem solution”. Matematicheskoe Modelirovanie, vol. 17, no. 12, pp. 110-118. [In Russian]
  8. Holanda R. W., Gildin E., Jensen J. L., Lake L. W., Kabir C. S. 2018. “A state-of-the-art literature review on capacitance resistance models for reservoir characterization and performance forecasting”. Energies, vol. 11, no. 12, art. 3368. DOI: 10.3390/en11123368
  9. Sayarpour M. 2008. “Development and application of capacitance-resistive models to water/CO2 floods”. Ph. D. diss. Austin: University of Texas.