Release:
2022. Vol. 8. № 2 (30)About the author:
Alexander D. Pisarev, Cand. Sci. (Tech.), Associate Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Senior Researcher, Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; spcb.doc@utmn.ru, https://orcid.org/0000-0002-5602-3880Abstract:
At the University of Tyumen, a biomorphic hardware neuroprocessor based on a combined memristor-diode crossbar has been developed. The neuroprocessor implements a biomorphic spiking neural network with a large number of neurons and trainable synaptic connections between them. Large biomorphic neural networks make it possible to reproduce the functionality of the human brain cortical column. This provides new opportunities for information processing tasks by standalone neuroprocessor. When designing and optimizing the operation of the input and output devices, as well as the logic matrix of the neuroprocessor created based on large combined memristor-diode crossbars, physico-mathematical models are needed to simulate their work.Keywords:
References:
Pisarev A. D., Udovichenko S. Yu. 2021. Biomorphic neuroprocessor based on nanoscale composite memristor-diode crossbar. Moscow: Technosphera, 2021. 228 p. [In Russian]
Pisarev A. D., Busygin A. N., Ibrahim A. H. A., Udovichenko S. Yu. 2020. “Simulation of information decoding processes in the output device of the biomorphic neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 4 (24), pp. 179-193. DOI: 10.21684/2411-7978-2020-6-4-179-193 [In Russian]
Pisarev A. D. 2019. “Energy efficient biomorphic pulse information coding in electronic neurons for the entrance unit of the neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no. 3, pp. 186-212. DOI: 10.21684/2411-7978-2019-5-3-186-212 [In Russian]
Udovichenko S. Yu, Pisarev A. D., Busygin A. N., Maevsky O. V. 2017. “3D CMOS, memristor nanotechnology for creating logical and memory matrices of neuroprocessor”. Nanoindustry, no. 5 (76), pp. 26-34. DOI: 10.22184/1993-8578.2017.76.5.26.34 [In Russian]
Udovichenko S. Yu., Pisarev A. D., Busygin A. N., Bobylev A. N. 2021.
“Biomorphous neuroprocessor — prototype of a new generation computer being a carrier of artificial intelligence. Part 2”. Nanoindustry, vol. 14, no. 1 (103), pp. 68-79.
DOI: 10.22184/1993-8578.2021.14.1.68.79 [In Russian]
Udovichenko S. Yu, Pisarev A. D., Busygin A. N., Maevsky O. V. 2018. “Neuroprocessor based on combined memristor-diode crossbar”. Nanoindustry, vol. 11, no. 5 (84), pp. 344-355. DOI: 10.22184/1993-8578.2018.84.5.344.355 [In Russian]
Biolek D., Di Ventra M., Pershin Yu. V. 2013. “Reliable SPICE simulations of memristors, memcapacitors and meminductors”. Radioengineering, vol. 22, no. 4, pp. 945-968. DOI: 10.48550/arXiv.1307.2717
Busygin A. N., Ebrahim A. H., Pisarev A. D., Udovichenko S. Yu. 2021. “Input device for a biomorphic neuroprocessor based on a memristor-diode crossbar for the pulse coding of information”. Nanobiotechnology Reports, vol. 16, no. 6, pp. 798-803. DOI: 10.1134/S2635167621060069
Pisarev A. D., Busygin A. N., Udovichenko S. Yu., Maevsky O. V. 2018. “3D memory matrix based on a composite memristor-diode crossbar for a neuromorphic processor”. Microelectronic Engineering, vol. 198, pp. 1-7. DOI: 10.1016/j.mee.2018.06.008
Pisarev A. D., Busygin A. N., Udovichenko S. Yu., Maevsky O. V. 2022. “A biomorphic neuroprocessor based on a composite memristor-diode crossbar”. Microelectronics Journal, vol. 102, art. 104827. DOI: 10.1016/j.mejo.2020.104827
Pisarev A. D., Busygin A. N., Bobylev A. N., Udovichenko S. Yu. 2019. “Operation principle and fabrication technology of the neuroprocessor input unit on the basis of the memristive logic matrix”. International Journal of Nanotechnology, vol. 16, no. 6-10, pp. 596-601. DOI: 10.1504/IJNT.2019.106630
Winters B. D., Shan-Xue Jin, Ledford K. R., Golding N. L. 2017. “Amplitude normalization of dendritic EPSPs at the soma of binaural coincidence detector neurons of the medial superior olive”. Journal of Neuroscience, vol. 37, no. 12, pp. 3138-3149. DOI: 10.1523/JNEUROSCI.3110-16.2017
Wong S., Hu C. M. 1991. “SPICE macro model for the simulation of zener diode I-V characteristics”. IEEE Circuits and Devices Magazine, vol. 7, no. 4, pp. 9-12. DOI: 10.1109/101.134564