Experimental study of heat exchange from a steam-gas mixture during heat transfer through a ribbed surface

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2021. Vol. 7. № 2 (26)

Title: 
Experimental study of heat exchange from a steam-gas mixture during heat transfer through a ribbed surface


For citation: Zinurov V. E., Dmitriev A. V., Sharipov I. I., Galimova A. R. 2021. “Experimental study of heat exchange from a steam-gas mixture during heat transfer through a ribbed surface”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 2 (26), pp. 60-74. DOI: 10.21684/2411-7978-2021-7-2-60-74

About the authors:

Vadim E. Zinurov, Assistant, Department Theoretical Foundations of Heat Engineering, Kazan State Power Engineering University; vadd_93@mail.ru; ORCID: 0000-0002-1380-4433

Andrey V. Dmitriev, Dr. Sci. (Tech.), Head of the Department Theoretical Foundations of Heat Engineering, Kazan State Power Engineering University; ieremiada@gmail.com; ORCID: 0000-0001-8979-4457

Ilnar I. Sharipov, Cand. Sci. (Tech.), Associate Professor, Department Theoretical Foundations of Heat Engineering, Kazan State Power Engineering University; sharipov.ii@kgeu.ru; ORCID: 0000-0002-3602-355X

Alsu R. Galimova, Undergraduate Student, Kazan State Power Engineering University; galimovaar00@mail.ru; ORCID: 0000-0002-6099-5631

Abstract:

This article deals with the problem of heat energy transfer from a steam-gas mixture with a constant temperature of 220 °C. An experimental study of the transfer of heat energy from a steam-gas mixture by a recuperative heat exchanger with a ribbed surface at the industrial enterprise “PULP Invest”, located at the production site of the industrial park Technopolis “Khimgrad” in Kazan, is presented. The design of a heat exchanger with a ribbed surface is described. The finned surface of the recuperative heat exchanger allowed intensifying the transfer of heat flow, due to the appearance of turbulent vortices of the vapor-gas medium when it moves between the transversely arranged fins. For a heated heat carrier, water was used, which in the future is planned to be used for technological and economic needs. This paper presents the experimental method and measuring instruments. During the experiments, the initial temperature of the cold coolant (water) varied from 28.8 to 31.9 °C. The series of experiments included 7 experiments with a different volume flow of water from 60 to 120 liters/hour. The initial volume flow rate was 60 l/h, the flow rate change step was 10 l/h. The results of the studies showed that the time of the output of the studied parameters: temperature head, heat flow and heat transfer coefficient to the stationary mode was 265 s. When entering the stationary mode with a volume flow rate of cold coolant in the range from 60 to 120 l/h, the temperature head varied from 32.2 to 63 °C, the heat flow varied from 4.1 to 4.5 kW, the heat transfer coefficient varied in the range of 24.4-27.9 W/(m2 · K). The obtained results allowed establishing that the heat transfer coefficient is inversely proportional to the thermal resistance of the vapor-gas phase.

References:

  1. Anichhin A. G. 2011. “Improving the heat transfer of recuperative heat exchangers”. Santehnika, otoplenie, kondicionirovanie, no. 11, pp. 50-53. [In Russian]

  2. Bahmetyev A. M., Bolshuhin M. A., Hizbullin A. M., Kamnev M. A. 2011. “Experimental studies of heat transfer during steam condensation from a steam-air mixture on the heat exchange surface of the emergency pressure reduction system in the protective shell”. Izvestija vysshih uchebnyh zavedenij. Jadernaja jenergetika, no. 4, pp. 64-71. [In Russian]

  3. Burenin V. V., Borisevich V. B., Narbut A. N., Gladov G. I. 2012. “Recuperative heat exchangers for volumetric hydraulic drives of transport units of rocket technology”. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tehnicheskogo universiteta (MADI), no. 2, pp. 82-82. [In Russian]

  4. Golovanchikov A. B., Vorotneva S. B., Dulkina N. A. 2016. “Simulation of the process of air heating by condensing steam in a two-tube heat exchanger”. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta, vol. 22, no. 2, pp. 255-263. DOI: 10.17277/vestnik.2016.02.pp.255-263 [In Russian]

  5. Golovanchikov A. B., Prohorenko N. A., Merencov N. A., Smolskaja D. O., Ostapenko A. A. 2019. “Simulation of thermal processes in the countercurrent motion of hot and cold coolant in a two-way shell-and-tube heat exchanger”. Energo- i resursosberezhenie: promyshlennost i transport, no. 1, pp. 7-11. [In Russian]

  6. Dmitriev A. V., Zinurov V. E., Gumerova G. H. 2018. “Estimated calculation of the heat transfer process in the combustion chamber during natural gas combustion”. Vestnik tehnologicheskogo universiteta, vol. 21, no 2, pp. 99-103. [In Russian]

  7. Dolzhikov A. S., Mogorychnyj V. I. 2017. “Processes of boiling and condensation of multicomponent working bodies in micro-heat exchangers”. Uspehi prikladnoj fiziki, vol. 5, no. 2. pp. 103-112. [In Russian]

  8. Zinurov V. E., Dmitriev A. V., Gajnatullin R. R., Latypov D. N., Hafizova A. I. 2019. “Reducing energy costs when removing low-potential heat from recycled water by using a sprinkler unit with corrugated perforated plates”. Vestnik tehnologicheskogo universiteta, vol. 22, no. 10, pp. 57-61. [In Russian]

  9. Kolosova N. V., Lapshina K. N. 2014. “Analytical solution of the criterion equation of heat transfer in contact-surface heat exchangers”. Nauchnyj zhurnal. Inzhenernye sistemy i sooruzhenija, no. 4 (2), pp. 26-32. [In Russian]

  10. Kolosova N. V., Lapshina K. N. 2014. “Heat exchange between the gas-liquid mixture and the cooling element in heat exchangers”. Sovremennye problemy nauki i obrazovanija, no. 2, p. 82. [In Russian]

  11. Kostuganov A. B. 2020. “Investigation of the efficiency of heat recovery in recuperative heat exchangers of autonomous ventilation systems”. Gradostroitelstvo i arhitektura, vol. 10, no. 1, pp. 36-46. [In Russian]

  12. Marjushin L. A., Korneev S. D., Afanasyeva E. V., Usanova O. Ju. 2013. “Determination of the temperature of the heat transfer surface of the recuperative heat exchanger by the graphical method”. Nadezhnost i bezopasnost jenergetiki, no. 2, pp. 43-45. [In Russian]

  13. Miheev N. I. 2009. “Separation of heat transfer coefficients based on the results of tests of a recuperative heat exchanger”. Trudy Akademjenergo, no. 2, pp. 7-12. [In Russian]

  14. Oleksjuk A. A., Gushhin A. M., Bondar A. A., Bondar E. A. 2020. “Determination of the final temperatures of heat carriers of a recuperative heat exchanger”. Progressivnye tehnologii i sistemy mashinostroenija, no. 4, pp. 64-68. [In Russian]

  15. Oleksyuk A. A., Gushchin A. M., Bondar A. A., Bondar E. A. 2020. “Determination of final temperatures of heat carriers of recuperative heat exchanger”. Progressivnye tekhnologii i sistemy mashinostroeniya, no. 4, pp. 64-68. [In Russian]

  16. Pelevin F. V. Timchenko V. I., Iliev A. G. 2008. “Problematic aspects of the use of recuperative heat exchangers in the processes of utilization of hot industrial effluents”. Vestnik associacii vuzov turizma i servisa, no. 4, pp. 84-88. [In Russian]

  17. Trofimov V. E., Pavlov A. L. 2016. “Intensification of heat transfer in liquid heat exchangers with cavern-pin finning”. Tehnologija i konstruirovanie v jelektronnoj apparature, no. 1, pp. 23-26. [In Russian]

  18. Farahov T. M., Afanasyev E. P., Laptev A. G. 2019. “Calculation of heat exchangers taking into account the flow structure”. Vestnik Ivanovskogo gosudarstvennogo jenergeticheskogo universiteta, no. 1, pp. 11-17. [In Russian]

  19. Shackij V. P., Gulevskij V. A., Spirina N. G. 2014. “Simulation of the operation of plate heat exchangers-recuperators”. Aktualnye napravlenija nauchnyh issledovanij XXI veka: teorija i praktika, vol. 2, no. 4 (2), pp. 323-326. [In Russian]

  20. Shinkevich T. O., Popkova O. S., Shinkevich O. P. 2011. “Compression heat pumps in heating systems”. Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, no. 68, pp. 125-136. [In Russian]