Simulation of information decoding processes in the output device of the biomorphic neuroprocessor

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2020. Vol. 6. № 4 (24)

Title: 
Simulation of information decoding processes in the output device of the biomorphic neuroprocessor


For citation: Pisarev A. D., Busygin A. N., Ibrahim A. H. A., Udovichenko S. Yu. 2020. “Simulation of information decoding processes in the output device of the biomorphic neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 4 (24), pp. 179-193. DOI: 10.21684/2411-7978-2020-6-4-179-193

About the authors:

Alexander D. Pisarev, Cand. Sci. (Tech.), Associate Professor, Department of Applied and Technical Physics, Head of Laboratory of Beam-Plasma Technologies, SEC “Nanotechnologies”, University of Tyumen; eLibrary AuthorID, ORCID, Scopus AuthorID, spcb.doc@gmail.com

Alexander N. Busygin, Postgraduate Student, Department of Applied and Technical Physics, Reseacher Laboratory Assistant, REC “Nanotechnology”, University of Tyumen; eLibrary AuthorID, ScopusIDa.n.busygin@utmn.ru


Abdulla H. Ebrahim, Postgraduate Student, Department of Applied and Technical Physics, University of Tyumen; abdulla.ybragim@mail.ru, ORCID: 0000-0002-1709-9882

Sergey Yu. Udovichenko, Dr. Sci. (Phys.-Math.), Professor of Department of Applied and Technical Physics; Head of REC “Nanotechnology”, University of Tyumen; eLibrary AuthorID, ResearcherID, ScopusID, udotgu@mail.ru

Abstract:

This publication is the series of articles continuation on the creation of neuroprocessor nodes based on a composite memristor-diode crossbar.

The authors have determined the principles of modifying the pulse information into a binary code in the output device of the neuroprocessor, implemented in a logical matrix based on a new electronic element — a combined memristor-diode crossbar. The processing of pulse signals is possible in the logical matrix, since one layer of the matrix is a set of logical AND or OR gates with arbitrarily connected inputs.

The authors have proposed two solutions to the problem of decoding pulses from a population of neurons in the output device, coming from the hardware neural network of the neuroprocessor, into standard binary signals. The first solution involves the two layers use of a logical matrix and a pulse generator. The compactness of the second solution is achieved due to the presence of a binary number generator, which allows to get rid of one layer of the logical matrix.

This article presents the SPICE modeling results of the decoding pulsed information process signals into binary format and confirms the operability of the output device electrical circuit.

The originality of the device operation lies in the switching of the generator signals by the logical matrix to the neuroprocessor output based on the time delay of the input pulse from the hardware neural network. The use of the memristor logical matrix in all nodes of the neuroprocessor, including the input device, makes it possible to unify the element base of the neuroprocessor complete electrical circuit, as well as its power supplies.

References:

  1. Ibragim A. Kh., Udovichenko S. Yu. 2020. “Modeling of an information coding device for a pulsed hardware neural network”. Proceedings of the All-Russian Conference of Young Scientists “Mathematical and information modeling”. Vol. 18, pp. 10-16. Tyumen. [In Russian]

  2. Alibart F., Zamanidoost E., Strukov D. 2013. “Pattern classification by memristive crossbar circuits using ex situ and in situ training”. Nature Communications. vol. 4, art. 2072. DOI: 10.1038/ncomms3072

  3. Chua L. 1971. “Memristor — the missing circuit element”. IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519. DOI: 10.1109/TCT.1971.1083337

  4. Gollisch T., Meister M. 2008. “Rapid neural coding in the retina with relative spike latencies”. Science, vol. 319, no. 5866, pp. 1108-1111. DOI: 10.1126/science.1149639

  5. Kang B. S., Ahn S. E., Lee M. J., Stefanovich G., Kim K. H., Xianyu W. X., Lee C. B., Park Y., Baek I. G., Park B. H. 2008. “High-current-density CuOx/InZnOx thin-film diodes for cross-point memory applications”. Advanced Materials, vol. 20, pp. 3066-3069. DOI: 10.1002/adma.200702932

  6. Liang J., Wong H. P. 2010. “Cross-point memory array without cell selectors — device characteristics and data storage pattern dependencies”. IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2531-2538. DOI: 10.1109/TED.2010.2062187.

  7. Pisarev A., Busygin A., Udovichenko S., Maevsky O. 2018. “3D memory matrix based on a composite memristor-diode crossbar for a neuromorphic processor”. Microelectronic Engineering, vol. 198, pр. 1-7. DOI: 10.1016/j.mee.2018.06.008

  8. Pisarev A. D., Busygin A. N., Bobylev A. N., Udovichenko S. Yu. 2019. “Operation principle and fabrication technology of the neuroprocessor input unit on the basis of the memristive logic matrix”. International Journal of Nanotechnology, vol. 16, no. 6-10, pp. 596-601. DOI: 10.1504/IJNT.2019.106630

  9. Pisarev A. D., Busygin A. N., Udovichenko S. Y., Maevsky O. V. 2020. “The biomorphic neuroprocessor based on the composite memristor-diode crossbar”. Microelectronic Journal, vol. 102, art. 104827. DOI: 10.1016/j.mejo.2020.104827

  10. Prezioso M., Merrikh-Bayat F., Hoskins B. D., Adam G. C., Likharev K. K., Strukov D. B. 2015. “Training and operation of an integrated neuromorphic network based on metal-oxide memristors”. Nature, vol. 521, pp. 61-64. DOI: 10.1038/nature14441

  11. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. 2008. “The missing memristor found”. Nature, vol. 453, no. 7191, pp. 80-83. DOI: 10.1038/nature06932