Numerical simulation of complex gas flows in concentrated fire vortices

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2019, Vol. 5. №3

Title: 
Numerical simulation of complex gas flows in concentrated fire vortices


For citation: Bautin S. P., Obukhov A. G. 2019. “Numerical simulation of complex gas flows in concentrated fire vortices”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 3, pp. 47-68. DOI: 10.21684/2411-7978-2019-5-3-47-68

About the authors:

Sergei P. Bautin, Dr. Sci. (Phys.-Math), Professor, Department of Higher and Applied Mathematics, Snezhinsk Physical-Technical Institute, National Research Nuclear University MEPhI (Snezhinsk); eLibrary AuthorID, sbautin@usurt.ru

Alexandr G. Obukhov, Dr. Sci. (Phys.-Math), Professor, Department of Business Informatics and Mathematics, Industrial University of Tyumen; eLibrary AuthorID, agobukhov@inbox.ru

Abstract:

This article presents the results of numerical simulation of free fire vortices arising in laboratory conditions. The authors demonstrate the possibility of obtaining such concentrated fire vortices in a series of experimental studies conducted under the supervision of A.  Yu.  Varaksin, a corresponding member of the Russian Academy of Sciences, at the Joint Institute for High Temperatures of the Russian Academy of Sciences.

The authors propose to consider the analytical and numerical studies of arising complex swirling gas flows during local heating of a metal underlying surface by several sources from the point of view of gas dynamics. When considering complex flows of a heating gas as a motion of a viscous, heat-conducting, and compressible continuous medium, the complete system of Navier — Stokes equations is used. The proposed initial-boundary conditions made it possible to numerically determine the main gas-dynamic characteristics of the resulting three-dimensional and unsteady gas flows in free fire vortices.

The calculation results showed that during the formation of fiery vortices, several stages are distinguished in their development. The first stage is characterized by the occurrence of local gas flows diverging in the radial direction from the heating regions. The second stage is accompanied by the formation in the regions of the location of the heating sources of local vortices with opposite spin directions. The third stage is characterized by the fact that from smaller vortices due to the intense influx of external air a common large thermal vortex is formed, which receives a positive twist under the influence of the Coriolis force. At the fourth stage, with an increase in the rotation speed, a decrease in the vertical dimensions of the thermal vortex and its decay into several small ones is observed. Thus, the completion of the life cycle of one concentrated vortex is replaced by the formation of a new one. For the initial parameters, the lifetime of the concentrated thermal vortex is about one minute.

References:

  1. Barannikova D. D. 2017. “Mathematical numerical simulation of the temperature swirling air flows under the action of gravity and Coriolis”. Cand. Sci. (Phys.-Math.) diss. Tyumen. [In Russian]
  2. Bautin S. P., Abdubakova L. V., Barannikova D. D., Kazachinsky A. O., Krutova I. Yu., Mezentsev A. V., Obukhov A. G., Sorokina E. M. 2015. “Mathematical and experimental modeling of ascending swirling flows”. Proceedings of the 11th All-Russian Conference on Fundamental Problems of Theoretical and Applied Mechanics, pp. 378-380. Kazan. [In Russian]
  3. Bautin S. P., Obukhov A.G. 2012. Mathematical Modeling of Destructive Atmospheric Vortices. Novosibirsk: Nauka. [In Russian]
  4. Bautin S. P., Obukhov A. G. 2013. “On one type of boundary conditions when calculating three-dimensional unsteady flows of compressible viscous heat-conducting gas”. Izvestiya Vuzov. Oil and gas, no 5, pp. 55-63. [In Russian]
  5. Bautin S. P., Obukhov A. G. 2013. “One exact stationary solution of the system of equations of gas dynamics”. Izvestiya vuzov. Oil and gas, no 4, pp. 81-86. [In Russian]
  6. Bautin S. P. 1987. “Representation of the solutions of the Navier-Stokes system near the contact characteristic”. Journal of Applied Mathematics and Mechanics, vol. 51, no 4, pp. 448-455. DOI: 10.1016/0021-8928(87)90083-9
  7. Bautin S. P., Deryabin S. L., Krutova I. Yu., Obukhov A. G. 2017. Destructive Atmospheric Whirlwinds and the Earth’s Rotation around Its Axis. Ekaterinburg: UrGUPS. [In Russian]
  8. Bautin S. P., Krutova I. Yu., Obukhov A. G., Bautin K. V. 2013. Destructive Atmospheric Vortices: Theorems, Calculations, Experiments. Novosibirsk: Nauka; Ekaterinburg: UrGUPS Publishing House. [In Russian]
  9. Bautin S. P., Obukhov A. G., Barannikova D. D. 2018.” Numerical Simulation of Fire Vortices with Consideration of Gravity and Coriolis Forces”. High Temperature, vol. 56, no 2. pp. 229-233. DOI: 10.1134/S0018151X18020025
  10. Varaksin A. Yu., Romash M. E., Taekin S. I., Kopeytsev V. N. 2009. “The generation of free concentrated air vortexes under laboratory conditions”. High Temperature, vol. 47, no 1, pp. 78-82. DOI: 10.1134/S0018151X09010106
  11. Varaksin A. Yu., Romash M. E., Kopeytsev V. N. 2009. “Controlling the behavior of air tornados”. High Temperature, vol. 47, no 6, pp. 836-842. DOI: 10.1134/S0018151X09060091
  12. Varaksin A. Yu., Protasov M. V., Teplitsky Yu. S. 2014. “About choice of particle parameters for visualization and diagnostics of free concentrated air vortices”. High Temperature, vol. 52, no 4, pp. 554-559. DOI: 10.1134/S0018151X14040257
  13. Varaksin A. Yu., Romash M. E., Kopeytsev V. N., Gorbachev M. A. 2012. “Method of impact on free nonstationary air vortices”. High Temperature, vol. 50, no 4, pp. 496-500. DOI: 10.1134/S0018151X12040219
  14. Varaksin A. Yu., Romash M. E., Kopeytsev V. N., Gorbachev M. A. 2010. “Simulation of free heat vortexes: Generation, stability, control”. High Temperature, vol. 48, no 6, pp. 918-925. DOI: 10.1134/S0018151X10060209
  15. Varaksin A. Yu., Romash M. E., Kopeytsev V. N. 2010. “The possibilities of visualization in the case of simulation of air tornados”. High Temperature, vol. 48, no 4, pp. 588-592. DOI: 10.1134/S0018151X10040176
  16. Varaksin A. Yu., Romash M. E., Kopeytsev V. N. 2010. “The possibility of influencing vortex atmospheric formations”. High Temperature, vol. 48, no 3, pp. 411-415. DOI: 10.1134/S0018151X10030168
  17. Varaksin A. Yu., Romash M. E., Kopeytsev V. N. 2014. “On the possible generation of fire vortices without using forced spin”. Reports of the Academy of Sciences, vol. 456, no 2, pp. 159-161. DOI: 10.7868/S0869565214140102 [In Russian] 
  18. Varaksin A. Yu., Romash M. E., Kopeytsev V. N., Taekin S. I. 2008. “The possibility of physical simulation of air tornados under laboratory conditions”. High Temperature, vol. 46, no 6, pp. 888-891. DOI: 10.1134/S0018151X08060229
  19. Varaksin A. Yu., Romash M. E., Kopeytsev V. N., Taekin S. I. “The parameters of unstable stratification of air leading to generation of free vortexes”. High Temperature, vol. 48, no 2, pp. 251-255. DOI: 10.1134/S0018151X10020173
  20. Varaksin A. Yu., Romash M. E., Kopeytsev V. N. 2011. Tornado [Tornado]. Moscow: Fizmatlit. [In Russian]
  21. Varaksin A. Yu., Romash M. E., Kopeytsev V. N., Gorbachev M. A. 2011. “Physical simulation of air tornados: Some dimensionless parameters”. High Temperature, vol. 49, no 2, pp. 310-313. DOI: 10.1134/S0018151X11020155
  22. Nalivkin D. V. 1984. Smerchi. Moscow: Nauka. [In Russian]
  23. Nalivkin D. V. 1969. Hurricanes, Storms and Tornadoes. Geographical Features and Geological Activity. Leningrad: Nauka. [In Russian]
  24. Obukhov A. G., Barannikova D. D. 2014. “Mathematical modelling and numerical calculation of the initial stage of forming the upward heat vortice”. Novoye slovo v nauke i praktike: gipotezy i aprobatsiya rezul’tatov issledovaniy, no 11, pp. 113-118. [In Russian]
  25. Obukhov A. G., Barannikova D. D. 2014. “Features of gas flow in the initial stage of formation of a thermal ascending swirling flow”. Izvestiya vuzov. Oil and gas, no 6, pp. 65-70. [In Russian]
  26. Obukhov A. G. 2019. “Calculations of thermodynamic characteristics of gas flows in the simulation of concentrated fire vortices”. Proceedings of the 21st International Conference on International Conference on Computational Mechanics and Modern Applied Software Systems (CMMASS 2019), pp. 525-527. Moscow. [In Russian]
  27. Piralishvili Sh. A., Polnee V. M., Sergeev M. N. 2000. Vortex Effect. Experiment, Theory, Technical Solutions. Moscow: Energomash. [In Russian]
  28. Sorokina E. M., Obukhov A. G. 2015. “Numerical calculation of the velocities of convective gas flow with a ring-shaped heating scheme”. Izvestiya vuzov. Oil and gas, no 3. pp. 84-90. [In Russian]
  29. Obukhov A. G., Bautin S. P., Abdubakova L. V. 2015. “Numerical calculation of thermodinamic parameters unsteady three-dimensional rising swirling flow air”. Physical and Mathematical Sciences, no 2, pp. 16-24.
  30. Varaksin A. Yu., Romash M. E., Kopeitsev V. N. 2013. “Effect of net structures on wall-free non-stationary air heat vortices”. International Journal of Heat and Mass Transfer, vol. 64, pp. 817-828. DOI: 10.1016/j.ijheatmasstransfer.2013.05.008
  31. Varaksin A. Yu., Romash M. E., Kopeitsev V. N., Gorbachev M. A. 2012. “Method of impact on free nonstationary air vortices”. High Temperature, vol. 50, no 4, pp. 496-500. DOI: 10.1134/S0018151X12040219
  32. Varaksin A. Yu., Romash M. E., Taekin S. I., Kopeitsev V. N. 2009. “The generation of free air vortexes under laboratory condition”. High Temperature, vol. 47, no 1, pp. 78-82. DOI: 10.1134/S0018151X09010106
  33. Varaksin A. Yu., Romash M. E., Kopeitsev V. N., Taekin S. I. 2008. “The possibility of physical simulation of air tornado under laboratory condition”. High Temperature, vol. 46, no 6, pp. 888-891. DOI: 10.1134/S0018151X08060229