Pressure field for a given selection in a layered heterogeneous anisotropic oil reservoir

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2019, Vol. 5. №1

Title: 
Pressure field for a given selection in a layered heterogeneous anisotropic oil reservoir


For citation: Filippov A. I., Akhmetova O. V., Kovalsky A. A., Gubaidullin M. R. 2019. “Pressure field for a given selection in a layered heterogeneous anisotropic oil reservoir”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 1, pp. 187-200. DOI: 10.21684/2411-7978-2019-5-1-187-200

About the authors:

Aleksandr I. Filippov, Dr. Sci. (Tech.), Professor, Department of General Scientific Disciplines, Ufa State Petroleum Technical University branch in Salavat; Professor, Department of General and Theoretical Physics, Sterlitamak branch of the Bashkir State University; eLibrary AuthorID, filippovai@rambler.ru

Oksana V. Akhmetova, Dr. Sci. (Phys.-Math.), Head of the Department of General and Theoretical Physics, Sterlitamak branch of the Bashkir State University; eLibrary AuthorID, ahoksana@yandex.ru

Aleksei A. Kovalsky, Cand. Sci. (Phys.-Math.), Director, Sterlitamak Branch of the Bashkir State University; eLibrary AuthorID, aakov68@mail.ru

Marat R. Gubaydullin, Junior Researcher, Sterlitamak Branch of the Bashkir State University; eLibrary AuthorID, Web of Science ResearcherID, fir_bmf@mail.ru

Abstract:

This article studies pressure filtration fields in oil reservoirs in the cases when the perforation interval does not coincide with the boundaries of the formation. That requires presenting the porous medium in the form of three layers for which the conjugation problem is formulated. In accordance with real conditions, the authors assume that the dependence of permeability on the vertical coordinate in the oil extraction interval is arbitrary. This led to solving the conjugation problem for the piezoconductivity equation with variable coefficients.

The results show that for such a case, an integral nonlocal condition should replace the local boundary one (which is usually used for homogeneous reservoirs for the case of a given selection). This emphasizes the novelty of the task.

Using the developed modification of the asymptotic method, a solution was found for the pressure field problem in a layered inhomogeneous anisotropic porous formation that is operated in the preset selection mode in the zero and first asymptotic approximations.

References:

  1. Ahmetova O. V., Filippov A. I., Filippov I. M. 2012. “Quasistationary pressure fields for linear filtration in an inhomogeneous anisotropic formation in the asymptotic approximation”. Izvestiya Rossiyskoy akademii nauk. Mekhanika zhidkosti i gaza, no 3, pp. 89-100. DOI: 10.1134/S0015462812030106
  2. Basniev K. S., Kochina I. N., Maksimov V. M. 1993. Underground Hydromechanics. Moscow: Nedra. [In Russian]
  3. Golubev G. V. 2003. “Numerical solution of the problem of determining the pressure field in an inhomogeneous fractured-porous layer”. Vestnik Kazanskogo gosudarstvennogo universiteta im. A. N. Tupoleva, no 4, pp. 26-30. [In Russian]
  4. Gubaydullin D. A., Nikiforov A. I., Sadovnikov R. V. 2011. “Identification of tensors of permeability coefficients of an inhomogeneous anisotropic fractured-porous formation”. Vychislitel’naya mekhanika sploshnyh sred, vol. 4, no 4, pp. 11-19. [In Russian] DOI: 10.7242/1999-6691/2011.4.4.35
  5. Ditkin V. A., Prudnikov A. P. 1965. Handbook of Operational Calculus. Moscow: Vysshaya shkola. [In Russian]
  6. Dmitriev N. M., Kadet V. V., Mikhaylov N. N. et al. 2007. “The effect of asymmetry in filtration in anisotropic porous media”. Tekhnologii nefti i gaza, no 1 (48), pp. 52-55. [In Russian]
  7. Filippov A. I., Ahmetova O. V., Gubaydullin M. R. 2015. “Asymptotically averaged solution of the pressure field problem in a layered heterogeneous porous medium”. Neftegazovoe delo: elektronniy nauchniy zhurnal, no 3, pp. 693-712. [In Russian] DOI: 10.17122/ogbus-2015-3-693-712
  8. Filippov A. I., Ahmetova O. V., Kovalskiy A. A. et al. 2016. “The first asymptotic approximation of the pressure field problem in an inhomogeneous orthotropic porous medium”. Izvestiya Ufimskogo nauchnogo centra Rossiyskoy akademii nauk, no 1, pp. 5-12. [In Russian]
  9. Filippov A. I., Ahmetova O. V., Gubaydullin M. R. 2015. “Pressure field for radial filtration in an inhomogeneous orthotropic formation in the asymptotic approximation”. Inzhenerno-fizicheskiy zhurnal, vol. 88, no 6, pp. 1285-1296. DOI: 10.1007/s10891-015-1317-0
  10. Filippov A. I., Ahmetova O. V., Filippov I. M. 2012. “Filtration field of pressure in an inhomogeneous formation at constant selection”. Inzhenerno-fizicheskiy zhurnal, vol. 85, no 1, pp. 3-17. DOI: 10.1007/s10891-012-0615-z
  11. Khasanov M. M., Toropov K. V., Lubnin A. A. 2009. “Determination of the vertical distribution profile of permeability taking into account the operation data of the wells”. Neftyanoe hozyaystvo, no 8, pp. 26-31. [In Russian]