Modeling Viscoelastic Properties of Aging Material

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №4

Title: 
Modeling Viscoelastic Properties of Aging Material


For citation: Yakubovskiy Yu. Е., Kolosov V. I., Donkova I. A., Kruglov S. O. 2018. “Modeling Viscoelastic Properties of Aging Material”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 4, pp. 181-190. DOI: 10.21684/2411-7978-2018-4-4-181-190

About the authors:

Yuriy E. Yakubovskiy, Dr. Sci. (Tech.), Professor, Department of Applied Mechanics, Institute of Transport, Industrial University of Tyumen, Tyumen, Russia; jakubovskijje@tyuiu.ru, https://orcid.org/0000-0002-6838-0631

Vasiliy I. Kolosov, Cand. Sci. (Tech.), Associate Professor, Department of Applied Mechanics, Industrial University of Tyumen; kolosova_l_v@mail.ru

Irina A. Donkova, Cand. Sci. (Tech.), Associate Professor, Department of Software, Institute of Mathematics and Computer Science, University of Tyumen, Tyumen, Russia; Associate Professor, Department of Applied Mechanics, Institute of Transport, Industrial University of Tyumen, Tyumen, Russia; i.a.donkova@utmn.ru, https://orcid.org/0000-0003-1151-4931

Sergey O. Kruglov, Postgraduate Student, Department of Applied Mechanics, Industrial University of Tyumen; skrugloff@mail.ru

Abstract:

This study aims to develop a creep kernel recording form, which would allow obtaining representations for creep curves calculation. Based on the elastic-creeping body theory, the authors present a possibility of the high-rate creep movement analytical study. New creep kernels to describe creeping of aging materials have been determined. A creep kernel, which contains a formula to describe the aging material properties, has been built. Essential stages of the proposed creep kernel formation have been given. The correspondence of the proposed calculations to real processes has been proved by a comparison with experimental data. In the numerical implementation, decomposition of integration elements into power series has been used.

Based on experimental data, creep kernel parameters have been determined by minimizing the calculated data standard deviation from experimental ones. The described approach to modeling viscoelastic properties of material allows predicting redistribution of stresses in time in layers of composite structures.

References:

  1. Arutyunyan N. Kh., Zevin A. A. 1982. “Ob odnom klasse yader polzuchesti stareyushchikh materialov” [On a Class of Creep Kernels of Aging Materials]. Prikladnaya mekhanika, vol. 8, no 4, pp. 14-21.
  2. Arutyunyan N.Kh., Zevin A.A. 1988. Raschet stroitel’nykh konstruktsiy s uchetom polzuchesti [Calculation of Building Structures with Regard to Creep]. Moscow: Stroyizdat.
  3. Vasilyev P. I. Gavrilin B. A., Malkevich A. B. 1983. Voprosy razvitiya teorii deformirovaniya stareyushchikh sred [The Issues of Developing the Theory of Deformation of Aging Media]. Issledovaniya po teoreticheskim osnovam rascheta stroitel’nykh konstruktsiy, pp. 122-128. Leningrad: Leningradskiy inzhenerno-stroitelnyy institut.
  4. Maltsev L. E., Karpenko Yu. I. 1999. Teoriya vyazkouprugosti dlya inzhenerov-stroiteley [The Theory of Viscoelasticity for Civil Engineers]. Tyumen: Vektor Buk.
  5. Novozhilov V. V. Osnovy nelineynoy teorii uprugosti [Fundamentals of the Nonlinear Theory of Elasticity]. Leningrad: Politekhnika.
  6. Novozhilov V. V. 2010. Teoriya tonkikh obolochek [Theory of Thin Shells]. Izdatelstvo Sankt-Peterburgskogo gosudarstvennogo universiteta.  
  7. Rzhanitsyn A. R. 1986. Teoriya polzuchesti [The Theory of Creep]. Moscow: Stroyizdat.
  8. Yakubovskiy Yu. E., Gulyaev B. A., Kolosov V. I., Krivchun N. A., Yakubovskaya S. V. 2016. Izgib sostavnykh plastin i pologikh obolochek: monografiya [Bending of Composite Plates and Flat Shells]. Tyumen: Industrial University of Tyumen. 
  9. Yakubovskiy Yu. E. 1994. “Nelineynaya teoriya izgiba i raschet sostavnykh plastin i pologikh obolochek peremennoy zhestkosti” [Nonlinear Theory of Bending and Calculation of Composite Plates and Shallow Shells of Variable Stiffness]. Cand. Sci. (Tech.) diss. abstract. Yekaterinburg.
  10. Yakubovskiy Yu. E. 1991. “Ob opredelenii parametrov yader polzuchesti dlya stareyushchikh materialov” [On Determination of Creep Kernel Parameters for Aging Materials]. Prikladnaya mekhanika, vol. 27, no 6, pp. 37-44.
  11. Yakubovskiy Yu. E., Kolosov V. I. 1991. Yadra polzuchesti stareyushchikh tel [The Cores of the Creep of Aging Bodies]. Stroitel’naya mekhanika i raschet sooruzheniy, no 1, pp. 55-61.
  12. Yakubovskiy Yu., Kolosov V., Gulyaev B., Goltsov V. 2016. “Bending of Structurally Orthotropic Composite Structures with Anchor Connection Layers”. Procedia Engineering, vol. 165, pp. 1246-1253. DOI: 10.1016/j.proeng.2016.11.847
  13. Yakubovskiy Yu., Goltsov V., Kolosov V. 2016. “Deformation of Working Shells of Mixing Devices in the Production of Concrete for Underground Construction. Procedia Engineering, vol. 165, pp. 1238-1245. DOI: 10.1016/j.proeng.2016.11.846