On the Existence Possibility of Radial Forms of Oscillations of Ring Elements

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №1

Title: 
On the Existence Possibility of Radial Forms of Oscillations of Ring Elements


For citation: Seregin S. V. 2018. “On the Existence Possibility of Radial Forms of Oscillations of Ring Elements”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 1, pp. 132-143. DOI: 10.21684/2411-7978-2018-4-1-132-143

About the author:

Sergei V. Seregin, Cand. Sci. (Tech.), Senior Researcher, Department of Scientific Research, Komsomolsk-on-Amur State University; seregin-komshome@yandex.ru

Abstract:

Nowadays, Hemispherical Resonator Gyroscope (HRG) are actively developed. HRG resonators have dynamic asymmetry, which leads to specific features in bending vibrations of rings, which in turn can lead to unstable operation of HRG. In the academic literature, the results of theoretical studies do not always match the experimental data. In some of the author’s works, the refinement of the mathematical model led to a number of new results. They show, for example, that some initial imperfections of form and attached masses lead to the appearance of radial modes of oscillations. In this case, the frequencies corresponding to the radial oscillation forms for certain geometric and wave parameters of the ring can be commensurable with the frequencies corresponding to the flexural modes of oscillations. However, it has not been possible to confirm this feature numerically and experimentally up to this day, unfortunately. It is believed that the frequencies of radial oscillations are either present in the frequency spectrum, but always at frequencies of higher oscillations, or absent altogether. In this article, this conclusion is questioned. On the example of oscillations of an isolated ring, the paper shows that the frequencies of radial oscillations can be not only of the same order as the frequencies of bending vibrations (as shown in the author’s previous works), but they can also be in the spectrum of lower frequencies (second, third tone) corresponding to bending modes.

References:

  1. Abakumov A. I., Yegunov V. V., Mokhov V. N., Pevnitskaya A. V., Solovyev V. P., Uchayev A. A. 1984. “Povedeniye sfericheskoy obolochki s prisoyedinennoy massoy pri impul’snom nagruzhenii” [Behavior of a Spherical Shell with an Attached Mass under Impulse Loading]. Prikladnyye problemy prochnosti i plastichnosti, pp. 109-113. Gorky.
  2. Basarab M. A., Lunin B. S., Matveyev V. A., Fomichev A. V., Chumankin Ye. A., Yurin A. V. 2014. “Miniatyurnyye volnovyye tverdotel’nyye giroskopy dlya malykh kosmicheskikh apparatov” [Miniature Hemispherical Resonator Gyroscope for Small Space Vehicles]. Vestnik MGTU im. N. E. Baumana. Ser. Priborostroyeniye, no 4, pp. 80-96.
  3. Dzhandzhgava G. I., Bakhonin K. A., Vinogradov G. M., Trebukhov A. V. 2008. “Besplatformennaya inertsial’naya navigatsionnaya sistema na baze tverdotel’nogo volnovogo giroskopa” [Strapdown Inertial Navigation System Based on Hemispherical Resonator Gyroscope]. Giroskopiya i navigatsiya, no 1, pp. 22-33.
  4. Yegorychev O. A., Poddayeva O. I. 2007. “Sobstvennyye prodol’no-radial’nyye kolebaniya uprugoy tsilindricheskoy obolochki zhestko zakreplennoy po tortsu” [Own Longitudinal-Radial Oscillations of an Elastic Cylindrical Shell Rigidly Fixed at the End]. Vestnik MGSU, no 1, pp. 35-36.
  5. Karpova A. P., Sapronov Yu. I. 2008. “Priblizhennoye vychisleniye amplitud tsiklov, bifurtsiruyushchikh pri nalichii rezonansov” [Approximate Calculation of the Amplitudes of Cycles Bifurcating in the Presence of Resonances]. Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp’yuternyye nauki, no 3, pp. 12-22.
  6. Kozubnyak S. A. 2015. “Rasshchepleniye sobstvennykh chastot kolebaniy tsilindricheskogo rezonatora volnovogo tverdotel’nogo giroskopa, vyzvannoye vozmushcheniyem formy” [Splitting of the Natural Frequencies of Oscillations of a Cylindrical Resonator of a Wave Solid-State Gyroscope, Caused by a Perturbation of the Form]. Vestnik MGTU im. N. E. Baumana. Ser. Priborostroyeniye, no 3, pp. 39-49.
  7. Kubenko V. D., Kovalchuk P. S., Krasnopolskaya T. S. 1984. Nelineynoye vzaimodeystviye form izgibnykh kolebaniy tsilindricheskikh obolochek [Nonlinear Interaction of the Flexural Vibrations of Cylindrical Shells]. Kiev: Nauk. dumka.
  8. Leyzerovich G. S. 2011. “Issledovaniye dinamicheskikh kharakteristik krugovykh tsilindricheskikh obolochek s nachal’nymi nepravil’nostyami” [Investigation of the Dynamic Characteristics of Circular Cylindrical Shells with Initial Irregularities]. Dr. Sci. (Phys.-Math.) diss. Komsomolsk-on-Amur: KnAGTU. 
  9. Leyzerovich G. S., Prikhodko N. B., Serogin S. V. 2013. “O vliyanii maloy prisoyedinennoy massy na rasshchepleniye chastotnogo spektra krugovogo kol’tsa s nachal’nymi nepravil’nostyami” [On the Influence of a Small Added Mass on the Splitting of the Frequency Spectrum of a Circular Ring with Initial Irregularities]. Stroitel’naya mekhanika i raschet sooruzheniy, no 6, pp. 49-51.
  10. Leyzerovich G. S., Seregin S. V. 2016. “Svobodnyye kolebaniya krugovykh tsilindricheskikh obolochek s prisoyedinennoy maloy sosredotochennoy massoy” [Free Oscillations of Circular Cylindrical Shells with Attached Small Concentrated Mass]. Prikladnaya mekhanika i tekhnicheskaya fizika, vol. 57, no 5, pp. 90-96. DOI: 10.15372/PMTF20160510
  11. Leonenko D. V. 2010. “Radial’nyye sobstvennyye kolebaniya uprugikh trekhsloynykh tsilindricheskikh obolochek” [Radial Eigenvibrations of Elastic Three-Layered Cylindrical Shells]. Mekhanika mashin, mekhanizmov i materialov, no 3 (12), pp. 53-56.
  12. Lysov A. N. Vinichenko N. T., Lysova A. A. 2009. Prikladnaya teoriya giroskopov: uchebnoye posobiye [Applied Theory of Gyroscopes]. Chelyabinsk: Izdatel’skiy tsentr YUUrGU. 
  13. Martynenko Yu. G., Merkuryev I. V., Podalkov V. V. 2009. “Dinamika kol’tsevogo mikromekhanicheskogo giroskopa v rezhime vynuzhdennykh kolebaniy” [Dynamics of a Circular Micromechanical Gyroscope in the Forced Oscillation Mode]. Giroskopiya i navigatsiya, no 3 (66), pp. 10-22. 
  14. Martynenko Yu. G., Merkuryev I. V., Podalkov V. V. 2008. “Upravleniye nelineynymi kolebaniyami vibratsionnogo kol’tsevogo mikrogiroskopa” [Control of Nonlinear Vibrations of a Vibrating Annular Micro Gyroscope]. Izv. RAN. MTT, no 3, pp. 77-89. 
  15. Maslov A. A., Maslov D. A., Merkuryev I. V. 2014. “Identifikatsiya parametrov volnovogo tverdotel’nogo giroskopa s uchetom nelineynosti kolebaniy rezonatora” [Identification of the Parameters of the Wave Solid-State Gyroscope with Allowance for the Nonlinearity of Cavity Oscillations.]. Pribory i sistemy. Upravleniye, kontrol’, diagnostika, no 5, pp. 24-29.
  16. Matveyev V. A., Lunin B. S., Basarab M. A., Chumankin Ye. A. 2013. “Balansirovka metallicheskikh rezonatorov volnovykh tverdotel’nykh giroskopov nizkoy i sredney tochnosti” [Balancing of Metal Resonators of Wave Solid-State Gyroscopes of Low and Medium Accuracy]. Nauka i obrazovaniye. Elektron. izdaniye, no 6. DOI: 10.7463/0613.0579179
  17. Merkur’yev I. V., Podalkov V. V. 2005. “Vliyaniye maloy anizotropii materiala rezonatora na sobstvennyye chastoty i ukhody volnovogo tverdotel’nogo giroskopa” [Influence of the Small Anisotropy of the Resonator Material on the Natural Frequencies and Departures of the Wave Solid-State Gyroscope]. Pribory i sistemy. Upravleniye, kontrol’, diagnostika, no 10, pp. 33-36.
  18. Merkuryev I. V., Podalkov V. V. 2009. Dinamika mikromekhanicheskogo i volnovogo tverdotel’nogo giroskopov [Dynamics of Micromechanical and Hemispherical Resonator Gyroscopes]. Moscow: Fizmatlit. 
  19. Seregin S. V. 2016. “Vliyaniye asimmetrichnykh nachal’nykh nesovershenstv formy na svobod-nyye kolebaniya tonkikh obolochek” [Influence of Asymmetric Initial Imperfections of Form on Free Oscillations of Thin Shells]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhni-ka, tekhnologii i mashinostroyeniye, vol. 15, no 3, pp. 209-222. DOI: 10.18287/2541-7533-2016-15-3-209-222
  20. Seregin S. V. 2014. “Vliyaniye ploshchadi kontakta i velichiny lineyno raspredelennoy i sosredotochennoy massy s krugovoy tsilindricheskoy obolochkoy na chastoty i formy svobodnykh kolebaniy” [Influence of the Contact Area and the Magnitude of a linearly Distributed and Concentrated Mass with a Circular Cylindrical Shell on the Frequencies and Shapes of Free Oscillations]. Vestnik MGSU, no 7, pp. 64-74. DOI: 10.22227/1997-0935.2014.7.64-74
  21. Seregin S. V. 2016. Dinamika tonkikh tsilindricheskikh obolochek s prisoyedinennoy massoy [Dynamics of Thin Cylindrical Shells with Attached Mass]. Komsomol’sk-na-Amure: KnAGTU.
  22. Seregin S. V. 2017. “Kachestvennyye effekty pri kolebaniyakh kol’tsevykh podkreplyayushchikh elementov s prisoyedinennoy massoy, kak chastnyy sluchay tonkoy beskonechno dlinnoy krugovoy tsilindricheskoy obolochki” [Qualitative Effects with Oscillations of Annular Reinforcing Elements with an Attached Mass, as a Special Case of a Thin Infinitely Long Circular Cylindrical Shell]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, no 1 (682), pp. 31-43.
  23. Seregin S. V. 2014. “Ob effekte rasshchepleniya izgibnogo chastotnogo spektra tonkikh krugovykh tsilindricheskikh obolochek, nesushchikh prisoyedinennuyu massu” [On the Effect of Splitting the Flexural Frequency Spectrum of Thin Circular Cylindrical Shells Carrying an Attached Mass]. Stroitel’naya mekhanika i raschet sooruzheniy, no 6 (257), pp. 59-61.
  24. Seregin S. V. 2014. “Svobodnyye izgibno-radial’nyye kolebaniya tonkoy krugovoy tsilin-dricheskoy obolochki, nesushchey prisoyedinennuyu massu” [Free Flexural-Radial Oscillations of a Thin Circular Cylindrical Shell Carrying an Attached Mass]. Vestnik MGSU, no 11, pp. 74-81. DOI: 10.22227/1997-0935.2014.11.74-81
  25. Seregin S. V. Leyzerovich G. S. 2014. “Svobodnyye kolebaniya beskonechno dlinnoy krugovoy tsilindricheskoy obolochki s nachal’nymi nepravil’nostyami i maloy prisoyedinennoy massoy” [Free Oscillations of an Infinitely Long Circular Cylindrical Shell with Initial Irregularities and a Small Attached Mass]. Uchenyye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, vol. 1, no 4 (20), pp. 36-43.
  26. Seregin S. V. 2014. “Chislennoye i analiticheskoye issledovaniye svobodnykh kolebaniy krugovykh tsilindricheskikh obolochek, nesushchikh prisoyedinennuyu massu, lineyno raspredelennuyu vdol’ obrazuyushchey” [Numerical and Analytical Study of Free Vibrations of Circular Cylindrical Shells Carrying an Attached Mass Linearly Distributed Along the Generator]. Vychislitel’naya mekhanika sploshnykh sred, vol. 7, no 4, pp. 378-384. DOI: 10.7242/1999-6691/2014.7.4.36
  27. Seregin S. V., Leyzerovich G. S. 2015. “Vliyaniye prisoyedinennoy massy na dinamicheskiye kharakteristiki tonkoy obolochki” [Influence of the Attached Mass on the Dynamic Characteristics of a Thin Shell]. Problemy mashinostroyeniya i avtomatizatsii, no 4, pp. 83-89.
  28. Tarlakovskiy D. V., Shcherbakov V. A. 2016. “Nestatsionarnyye radial’nyye kolebaniya elektro-magnitouprugogo krugovogo tsilindra” [Nonstationary Radial Oscillations of an Electro-Magnetoelastic Circular Cylinder]. Problemy prochnosti i plastichnosti, vol. 78, no 4, pp. 396-405
  29. Trutnev G. A. 2015. “Model’ tverdotel’nogo volnovogo giroskopa v medlennykh peremennykh” [Model of a Hemispherical Resonator Gyroscope in Slow Variables]. Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp’yuternyye nauki, vol. 25, no 3, pp. 421-429.
  30. Ayazi F., Najafi K. 2001. “A HARPSS Polysilicon Vibrating Ring Gyroscope”. IEEE, Journal of Microelectromechanical Systems, vol. 10, no 2, pp. 169-179. DOI: 10.1109/84.925732