Computer Technology for Determination of Interphase Interaction Function Based on Flow Simulation in Capillary Cluster

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2016, Vol. 2. №1

Title: 
Computer Technology for Determination of Interphase Interaction Function Based on Flow Simulation in Capillary Cluster


About the authors:

Sergei V. Stepanov, Dr. Sci. (Tech.), Senior Expert, Tyumen Petroleum Research Center; Professor, Applied Physics Department, University of Tyumen; eLibrary AuthorID, svstepanov@tnnc.rosneft.ru

Aleksandr B. Shabarov, Dr. Sci. (Tech.), Professor, Department of Applied and Technical Physics, Institute of Physics and Technology, University of Tyumen; eLibrary AuthorID, ORCID, ResearcherID, ScopusID, kaf_mms@utmn.ru

Georgii S. Bembel, Lead Specialist, Tyumen Petroleum Research Center; gsbembel@rosneft.ru

Abstract:

The paper presents the original computer technology for the determination of interphase interaction function used in the calculation of relative permeability of water and oil on the basis of generalized Bernoulli equations. The determination of interphase interaction function is based on the mathematical simulation of slug flow of water and oil in porous media represented as a cluster of axisymmetric capillary capillaries. In this model, the problem solving comes to the numerical solution of Navier-Stokes equations by the fluid volume method using surface force function to account for the capillary pressure in the meniscus. It is shown that the developed technology allows the interphase interaction function to be calculated for different capillary numbers.

References:

  1. Baroud Ch. N., Gallare F., Dangla R. 2010. “Dynamics of microfluidic droplets.” Lab Chip, vol. 10, pp. 2032-2045. DOI: 10.1039/c001191f
  2. Bembel G. S., Stepanov S. V. 2015. “Matematicheskoe modelirovanie chetochnogo dvukhfaznogo techeniya v sisteme kapillyarnykh kanalov” [Mathematical Modeling of Slug Two-Phase Flow in the System of Capillary Canals]. Avtomatizatsiya, telemekhanizatsiya i svyaz v neftyanoi promyshlennosti, no 6, pp. 30-38.
  3. Dahle H. K., Celia M. A. 1999. “A dynamic network model for two-phase immiscible flow.” Computational Geosciences, no 3, pp. 1-22. DOI: 10.1023/A:1011522808132
  4. Dobrynin V. M., Kovalev A. G., Kuznetsov A. M., Chernoglazov V. N. 1988. Fazovye pronitsaemosti kollektorov nefti i gaza [Phase Permeabilities of Oil and Gas Reservoirs]. Moscow: VNIIOENG.
  5. Martin J. B., Matthew D. J., Mohhamad P., Per H. V. 2002. “Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow.” Advances in Water Resources, no 25, pp. 1069-1089. DOI: 10.1016/S0309-1708(02)00049-0
  6. Medvedskii R. I., Sevastyanov A. A. 2004. Otsenka izvlekaemykh zapasov nefti i prognoz urovnei dobychi po promyslovym dannym [Estimation of Recovery Volumes of Oil and a Production Level Forecast with Field Data]. St. Petersburg: Nedra.
  7. Mirzadzhanzade A. Kh., Ametov I. M., Kovalev A. G. 2005. Fizika neftyanogo i gazovogo plasta [Physics of Oil and Gas Reservoir]. Moscow; Izhevsk: IKI.
  8. Raeini A. Q. 2013. “Modelling multiphase flow through micro-CT images of the pore space.” Ph. D. diss., Imperial College London.
  9. Ramakrishnan T. S., Wasan D. T. 1984. “The relative permeability function for two-phase flow in porous media: effect of capillary number.” SPE/DOE 12693, pp. 163-181.
  10. Renardy Y., Renardy M. 2002. “PROST: A parabolic reconstruction of surface tension for the volume-of-fluid method.” Journal of Computational Physics, vol. 183, pp. 400-421. DOI: 10.1006/jcph.2002.7190
  11. Santos L. O. E dos, Wolf F. G., Philippi P. C. 2005. “Dynamics of interface displacement in capillary flow.” Journal of Statistical Physics, vol. 121, no 1/2, October, pp. 197-207. DOI: 10.1007/s10955-005-7001-6
  12. Stark J., Manga M. 2000. “The motion of long bubbles in a network of tubes.” Transport in Porous Media, vol. 40, pp. 201-218. DOI: 10.1023/A:1006697532629
  13. Stepanov S. V. 2006. “Ispolzovanie dannykh razrabotki mestorozhdenii nefti dlya polucheniya krivykh fazovykh pronitsaemostei” [Use of Oil Development Data for Phase Permeability Curves Obtaining]. Neftyanoe khozyaistvo, April, pp. 67-69.
  14. Stepanov S. V., Sokolov S. V., Altunin A. E., Cheremisin N. A., Shabarov A. B. 2013. “Raschetnyi metod polucheniya otnositelnykh fazovykh pronitsaemostei na osnove resheniya obobshchennykh uravnenii Bernulli dlya sistemy porovykh kanalov” [Calculation Method of Receiving Relative Phase Permeability Based on Solution of Bernoulli Generalized Equations for a System of Porous Channels]. Neftepromyslovoe delo, no 8, pp. 40-46.
  15. Yakimchuk I. V., Denisenko A. S., Sharchilev B. D., Varfolomeev I. A. 2015. “X-ray micro-CT in conjunction with other techniques for core analysis.” Proceedings of Micro-CT User Meeting, pp.68-73.