Numerical solution of the Stefan’s problem

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2015, Vol. 1. №3(3)

Title: 
Numerical solution of the Stefan’s problem


For citation: Borodin S. L. 2015. “Numerical solution of the Stefan’s problem”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 3, pp. 164-175. DOI: 10.21684/2411-7978-2015-1-3-164-175

About the author:

Stanislav L. Borodin, Cand. Sci. (Phys.-Math.), Researcher, Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences; eLibrary AuthorID, ORCID, Web of Science ResearcherID, Scopus Author ID, borodin@ikz.ru

Abstract:

All of the most well-known numerical methods for solving the Stefan’s problem, as well as a new method developed by the author are considered for the purpose of choosing the most efficient of them from a perspective of accuracy and computational speed. A comparison is carried out on the results of solving the problem for the boundary motion of “ice-water” phase transition around the vertical well passing through the thickness of permafrost. The conclusions, which are distributed to other multidimensional and multi-front statements of the Stefan’s problem, are made. The mathematical model, the brief description of the considered numerical methods and the boundaries of their applicability are presented. The comparison shows the advantages and disadvantages of different methods. It is demonstrated that the use of the explicit scheme leads to a marked increase in computation time, the six-point symmetric scheme may have oscillating solution; therefore, the implicit scheme is the most preferred. It is concluded that the most efficient method for one-dimensional and one front Stefan’s problems is the method of catching the front in the grid node using the implicit scheme, and the most efficient method for multi-dimensional and multi-front Stefan’s problems is the enthalpy method using the implicit scheme, which has been developed by the author.

References:

  1. Danyluk I. I. On the Stefan problem. Uspekhi Matematicheskih nauk [Russian Mathematical Surveys]. 1985. Vol. 40. No 5. Pp. 133-185. (In Russian)
  2. Krylov D. A. Podhody k resheniju trehmernyh zadach teploprovodnosti s uchetom fazovyh perehodov v dispersnyh sredah [Approaches to Solving Three-dimensional Problems of Heat Conduction with Phase Transitions in Dispersion Medium] // Molodezhnyj nauchno-tehnicheskij vestnik [Youth Scientific and Technical Herald]. 2013. No 3. http://sntbul.bmstu.ru/doc/562218.html. (In Russian)
  3. Medvedskij R. I. Stroitel'stvo i ekspluatacija skvazhin na neft' i gaz v vechnomerzlyh porodah [Construction and Operation of Oil and Gas Wells in Permafrost]. M.: Nedra, 1987. 230 p. (In Russian)
  4. Musakaev N. G., Romanjuk S. N., Borodin S. L. Chislennoe issledovanie zakonomernostej dvizhenija fronta fazovogo perehoda v mnogoletnemerzlyh porodah [Numerical Study of Mechanism of Phase Transition Front Movement in Permafrost Rocks] // Izvestija vuzov. Neft' i gaz [Higher Educational Institutions News. Oil and Gas]. 2011. No 6. Pp. 122-128. (In Russian)
  5. Novyj spravochnik himika i tehnologa. Processy i apparaty himicheskoj tehnologii [New Guide for Chemists and Technologists. Processes and Devices of Chemical Technology]. SPb.: Professional NPO. 2004. Part I; 2006. Part II. (In Russian)
  6. Osnovy geokriologii. [Fundamentals of Geocryology.] / Je. D. Ershova (Ed.). M.: Izd-vo MGU [Moscow State University Publishing House], 2001. Ch. 4. Dinamicheskaja geokriologija [P. 4. Dynamic Geocryology] (In Russian)
  7. Pavlov A. R. Matematicheskoe modelirovanie processov teplomassoperenosa pri fazovyh perehodah. Uchebnoe posobie [Mathematical Modelling of Heat and Mass Transfer Processes at Phase Transitions. Textbook]. Yakutsk, 2001. 58 p. (In Russian)
  8. Patankar S. V. Chislennye metody reshenija zadach teploobmena i dinamiki zhidkosti [Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics]. M.: Energoatomizdat, 1984. 146 p. (In Russian)
  9. Polezhaev Ju. V., Jurevich F. B. Teplovaja zashhita [Thermal Protection]. M.: Energija [Energy], 1976. 392 p. (In Russian)
  10. Samarskij A. A., Vabishhevich P. N. Vychislitel'naja teploperedacha [Computational Heat Transfer]. M.: Editorial URSS, 2003. 784 p. (In Russian)
  11. Samarskij A. A., Gulin A. V. Chislennye metody: uchebnoje posobie dlja VUZov [Numerical Methods: Textbook for University Students]. M.: Nauka [Science], 1989. 432 p. (In Russian)
  12. Samarskij A. A., Moiseenko B. D. Ekonomichnaja shema skvoznogo scheta dlja mnogomernoj zadachi Stefana [An Economic Continuous Calculation Scheme for the Stefan Multidimensional Problem] // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Computational Mathematics and Mathematical Physics]. 1965. Vol. 5. No 5. Pp. 816-827. (In Russian)
  13. Tihonov A. N., Samarskij A. A. Uravnenija matematicheskoj fiziki [Equations of Mathematical Physics]. M.: Nauka [Science], 1977. 735 p. (In Russian)
  14. Shagapov V. Sh., Musakaev N. G. Teploobmen skvazhiny s okruzhajushhimi porodami [Heat Transfer in the Well with Surrounding Formations] // Inzhenerno-fizicheskij zhurnal [Engineering Physics and Thermophysics]. 1998. Vol. 71. No 6. Pp.1134-1140. (In Russian)
  15. Jozef Stefan: His Scientific Legacy on the 175th Anniversary of His Birth / J. C. Crepeau (Ed.). M. — Idaho — USA, 2013.