Выпуск:
2017. Том 3. №1Об авторах:
Брунова Елена Георгиевна, доктор филологических наук, профессор кафедры английского языка, военный историк, Тюменский государственный университет; egbrunova@mail.ru; ORCID: 0000-0002-8493-5932Аннотация:
Целью исследования является разработка алгоритма на основе правил для анализа тональности текста. Материалом послужили отзывы на русском языке о качестве банковского обслуживания из народного рейтинга банков (сайт www.banki.ru). Анализ тональности текста рассматривается как задача классификации, т. е. отнесение текста к одному из двух классов — с положительной и отрицательной оценкой. В основу алгоритма положено использование определенных лексико-грамматических конструкций наряду с оценочным лексиконом, содержащим классы слов с положительной и отрицательной оценкой, а также три служебных класса.
Эффективность предложенного алгоритма оценивается с помощью показателей точности (Precision), полноты (Recall) и меры F Ван Ризбергена в сравнении с результатами работы другого алгоритма, широко применяемого для анализа тональности — Наивного Байесовского классификатора. Для оценки эффективности использован корпус из 200 отзывов о качестве банковского обслуживания. Значения точности, полноты и F-меры у предложенного алгоритма оказались на 5-8% выше, чем у Наивного Байесовского классификатора.
Ключевые слова:
Список литературы: