Release:
2025. Vol. 11. № 3 (43)About the authors:
Roman M. Bachurin, Postgraduate Student, Department of Software, School of Computer Sciences, University of Tyumen, Tyumen, Russia; stud0000107305@utmn.ru, https://orcid.org/0009-0001-2177-3024Abstract:
The article is devoted to the development of methods for mathematical modeling of final product yields in plant biomass pyrolysis using machine learning models.Keywords:
References:
Le, Thi, Bondarev, A. V., Bondareva, L. I., Monakova, A. S., & Barshin, A. V. (2022). Application of machine learning algorithms in predicting pyrolytic analysis result. Proceedings of Higher Educational Establishments. Geology and Exploration, 63, 8–19. https://doi.org/10.32454/0016-7762-2020-63-6-8-19 [In Russian]
Balsora, H. K., S, K., Joshi, J.B., Sharma, A., & Chakinala, A. G. (2023). Artificial neural network-based models for the prediction of biomass pyrolysis products from preliminary analysis. Industrial & Engineering Chemistry Research, 62(36), 14311–14319. https://doi.org/10.1021/acs.iecr.3c01662
Cheng, Y., Ekici, E., Yildiz, G., Yang, Y., Coward, B., & Wang, J. (2023). Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production. Journal of Analytical and Applied Pyrolysis, 169, 105857. https://doi.org/10.1016/j.jaap.2023.105857
Fatehi, H., & Bai, X. S. (2014). A comprehensive mathematical model for biomass combustion. Combustion Science and Technology, 186(4-5), 574–593. http://dx.doi.org/10.1080/00102202.2014.883255
Fernando, N., Amin, M., Narayana, M., Jayawickrama, T., Asadumllah, & Jayasena, S. (2015). A mathematical model for pyrolysis of biomass. In Proceedings of the Moratuwa Engineering Research Conference (MERCon) (pp. 6–11). IEEE. https://doi.org/10.1109/MERCon.2015.7112311
Hasse, Ch., Debiagi, P., Wen, X., Hildebrandt, K., Vascellari, M., & Faravelli, T. (2021). Advanced modeling approaches for CFD simulations of coal combustion and gasification. Progress in Energy and Combustion Science, 86, 100938. https://doi.org/10.1016/j.pecs.2021.100938
İşçen, A., Öznacar, K., Tunç, K. M. M., & Günay, M. E. (2023). Exploring the critical factors of biomass pyrolysis for sustainable fuel production by machine learning. Sustainability, 15(20), 14884. https://doi.org/10.3390/su152014884
Kaczor, Z., Buliński, Z., & Werle, S. (2020). Modelling approaches to waste biomass pyrolysis: A review. Renewable Energy, 159, 427–443. https://doi.org/10.1016/j.renene.2020.05.110
Klason, T., & Bai, X.-S. (2003). FG-DVC modeling of biomass combustion in fixed bed. In Proceedings of the Third Mediterranean Combustion Symposium (pp. 188–194).
Lee, H., Choi, I.-H., & Hwang, K.-R. (2024). Machine learning prediction of bio-oil production from the pyrolysis of lignocellulosic biomass: Recent advances and future perspectives. Journal of Analytical and Applied Pyrolysis, 179, 106486. https://doi.org/10.1016/j.jaap.2024.106486
Leng, L., Yang, L., Lei, X., et al. (2022). Machine learning predicting and engineering the yield, N content, and specific surface area of biochar derived from pyrolysis of biomass. Biochar, 4(63). https://doi.org/10.1007/s42773-022-00183-w
Mighani, M., Shahi, A., & Antonioni, G. (2017). Catalytic pyrolysis of plastic waste products: Time series modeling using least square support vector machine and artificial neural network. In Proceedings of the 16th International Conference on Sustainable Energy Technologies — SET 2017.
Niksa, S. (2020). bio-FLASHCHAIN® theory for rapid devolatilization of biomass 2. Predicting total yields for torrefied woods. Fuel, 263, 116645. https://doi.org/10.1016/j.fuel.2019.116645
Parmar, K. (2017). Biomass — An overview on composition characteristics and properties. IRAInternational Journal of Applied Sciences, 7(1), 42–51. http://dx.doi.org/10.21013/jas.v7.n1.p4
Pielsticker, S., Debiagi, P., Cerciello, F., Hasse, Ch., & Kneer, R. (2024). Comparative analysis of pyrolysis models including SFOR, CRECK, and Bio-CPD to predict reaction kinetics and products from extracted biomass components. Fuel, 371, part A, 131867. https://doi.org/10.1016/j.fuel.2024.131867
Popescu, F., Mahu, R., Ion, I., & Rusu, Eu. (2020). A mathematical model of biomass combustion physical and chemical processes. Energies, 13(23), 6232. https://doi.org/10.3390/en13236232
Ranganathan, P., & Gu, S. (2016). Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresource Technology, 213, 333–341. https://doi.org/10.1016/j.biortech.2016.02.042
Ranzi, E., Debiagi, P., & Frassoldati, A. (2017). Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note II: Secondary gas-phase reactions and bio-oil formation. ACS Sustainable Chemistry & Engineering, 5(4), 2882–2896. https://doi.org/10.1021/acssuschemeng.6b03098
Ranzi, E., Debiagi, P., & Frassoldati, A. (2017). Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: Kinetic mechanism of biomass pyrolysis. ACS Sustainable Chemistry & Engineering, 5(4), 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096
Rongrong Lu, Jing Li, Xiong Zou, Anran Wang, & Hongguang Dong. (2023). Prediction of product distribution of low-medium rank coal pyrolysis using artificial neural networks model. Journal of the Energy Institute, 107, 101181. https://doi.org/10.1016/j.joei.2023.101181
Sharma, A., Pareek, V., & Zhang, D. (2015). Biomass pyrolysis — A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews, 50, 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193
Shen, J., Yan, M., Fang, M., & Gao, X. (2022). Machine learning-based modeling approaches for estimating pyrolysis products of varied biomass and operating conditions. Bioresource Technology Reports, 20, 101285. https://doi.org/10.1016/j.biteb.2022.101285
Tabakaev, R., Astafev, A., Shanenkova, Yu., Dubinin, Yu., Yazykov, N., & Yakovlev, V. (2019). Thermal effects investigation during biomass slow pyrolysis in a fixed bed reactor. Biomass and Bioenergy, 126, 26–33. https://doi.org/10.1016/j.biombioe.2019.05.010
Ting Yan Li, Huan Xiang, Yang Yang, Jiawei Wang, & Güray Yildiz. (2021). Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network. Journal of Analytical and Applied Pyrolysis, 159, 105286. https://doi.org/10.1016/j.jaap.2021.105286
Tsekos, C., Tandurella, S., & de Jong, W. (2021). Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks. Journal of Analytical and Applied Pyrolysis, 157, 105180. https://doi.org/10.1016/j.jaap.2021.105180
Vikram, Sh., Rosha, P., & Kumar, S. (2021). Recent modeling approaches to biomass pyrolysis: A review. Energy & Fuels, 35(9), 7406–7433. https://doi.org/10.1021/acs.energyfuels.1c00251
Wijayanti, W., Musyaroh, Sasongko, M. N., Kusumastuti, R, & Sasmoko. (2021). Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics. Case Studies in Thermal Engineering, 28, 101625. https://doi.org/10.1016/j.csite.2021.101625
Willmott, C. J., & Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science, 20(1), 89–102. https://doi.org/10.1080/13658810500286976
Wooters, T., Baxter, L., & Fletcher, T. (2005). CPD model calculations of black liquor and biomass pyrolysis. Prepr. Symp. — Am. Chem. Soc., Div. Fuel Chem., 50, 108–109.
Zhu, X., Li, Y., & Wang, X. (2019). Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresource Technology, 288, 121527. https://doi.org/10.1016/j.biortech.2019.121527