Modeling of the flow in the gas turbine engine path for technical state diagnostics

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2025. Vol. 11. № 3 (43)

Title: 
Modeling of the flow in the gas turbine engine path for technical state diagnostics


For citation: Inozemtsev, D. A., Bunyakin, A. V., & Dunaev, V. I. (2025). Modeling of the flow in the gas turbine engine path for technical state diagnostics. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 11(3), 130–146. https://doi.org/10.21684/2411-7978-2025-11-3-130-146

About the authors:

Dmitry A. Inozemtsev, Senior Lecturer, Department of Gas and Oil Transportation Systems and Equipment of the Oil and Gas Industry, Kuban State Technological University, Krasnodar, Russia; d.a.inozemtsev@mail.ru, https://orcid.org/0000-0002-3855-3204

Alexey V. Bunyakin, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Mathematical and Computer Methods, Kuban State University, Krasnodar, Russia; alex.bunyakin@mail.ru, https://orcid.org/0000-0002-1849-1667



Vladislav I. Dunaev, Dr. Sci. (Phys.-Math.), Professor, Department of Gas and Oil Transportation Systems and Equipment of the Oil and Gas Industry, Institute of Oil, Gas and Power Engineering, Kuban State Technological University, Krasnodar, Russia; dunayev1964@bk.ru, https://orcid.org/0000-0002-4166-6808

Abstract:

The paper presents a mathematical model that makes it possible to determine the mass flow rate of air passing through the path of a gas turbine engine. The amount of mass air flow does not allow direct measurement by thermogasdynamic parameters retrieved by the unit’s standard sensors. The mathematical model makes it possible to determine the dimensionless diagnostic parameters characterizing the normal operation of the unit and to build their corresponding dependences on the measured parameters. The ratio of the equality of compressor and turbine capacities in the established operating modes is used as the main provision for constructing a mathematical model. The proposed method makes it possible to diagnose the state of the technical system and consists in calculating physically dimensionless parameters that are weakly dependent on changes in the normal operating mode of a gas pumping unit with a gas turbine engine. These parameters are more informative than the physical parameters measured by sensors. The practical result of the work is the construction of the reference dependences of the given dimensionless diagnostic parameters on the measured parameters of the gas path corresponding to the normal operation of the gas turbine engine as the drive of the gas pumping unit of the main compressor stations.

References:

Averyanov, A. B. (2006). Improvement of methods of parametric diagnostics of a high-pressure compressor. Civil Aviation High Technologies, 109, 85–89. EDN KPHFGL. [In Russian]

Bagerman, A. Z., Konopatova, A. V., Leonova, I. P., & Shitkov, V. N. (2015). From parametric diagnostics to prediction of gas-turbine engine lifecycle. Transactions of the Krylov Shipbuilding Research Institute, 89(373), 81–84. EDN JRZVWA. [In Russian]

Bunyakin, A. V., & Torbeev, S. A. (2006). Diagnostics of the flow part of aviation gas-turbine engines using the example of the D-36 turbofan engine. Civil Aviation High Technologies, 109, 30–37. [In Russian]

Galiullin, Z. T., & Leontiev, E. V. (1991). Intensification of the Main Gas Transport. Nedra. [In Russian]

Gilyaziev, M. G., & Vasiliev, E. R. (2018). Parametric diagnostics of GPA-C-25 NK-RS gas pumping units. In Collection of Reports of the Expanded Meeting of the Scientific and Technical Council and the Council of Young Scientists and Specialists of Gazprom Transgaz Kazan LLC “New Directions of Innovation Activity at Gas Industry Enterprises” (pp. 30–38). KONVERT LLC. EDN YRPIIX. [In Russian]

Zaslavsky, E. A., & Blinov, V. L. (2018). Parametric diagnostics and technical condition estimation of gas pumping units. In Proceedings of the International Scientific and Practical Conference of Students, Postgraduates and Young Scientists dedicated to the memory of Prof. Danilov N. I. (1945–2015) — Danilovsky Readings “Energy and resource conservation. Energy supply. Non-traditional and renewable energy sources. Atomic Energy” (pp. 203–206). Ural Federal University named after the First President of Russia B. N. Yeltsin. EDN CFYBKM. [In Russian]

Ivanov, E. S. (2012). Modeling details of the performance modes of gas transmittal units at gas transmission compressor stations in modern operational conditions. Petroleum Engineering, 5, 99–123. EDN RLOAKH. [In Russian]

Cumpsty, N. (2000). Compressor Aerodynamics (Transl. from English). Mir. [In Russian]

Krivosheev, I. A., Rozhkov, K. E., & Simonov, N. B. (2017). Application of the parametric diagnostic method using complex indicators to assess the state of the gas turbine drive in the gas pumping unit. PNRPU Aerospace Engineering Bulletin, 3(50), 46–57. [In Russian]

Lefebvre, A. (1986). Processes in the Combustion Chambers of the Gas-Turbine Engine (Transl. from English). Mir. [In Russian]

Mathematical Encyclopedia. (1988). Soviet Encyclopedia. [In Russian]

Perevoshchikov, S. I. (2014). Diagnostics of gas turbine engines by their effective capacity. Oil and Gas Studies, (3), 112–121. [In Russian]

Perevoshchikov, S. I. (2019). Analysis of methods for parametric diagnostics of technical condition of gas turbine units. Oil and Gas Studies, (1), 101–112. [In Russian]

Raherinjatovo, J. C., & Gishvarov, A. S. (2017). Parametric diagnostics of single-GTE on the basis of on neural network modeling workflows. Vestnik USATU, 4(78), 86–96. [In Russian]

Smirnov, E. A., Tolstikhin, Yu. Yu., Blinov, F. V., & Shishov, A. V. (2018). Solution of the actual problems of parametric diagnostics of GTK-25IR gas compressor units. Gas Industry, 2(764), 62–65. EDN YPOSAW. [In Russian]

Stelmakh, M. V., Krivosheev, I. A., & Goryunov, I. M. (2015). Perfecting methods of technical diagnostics of gas compressor plants with gas turbine drive AL-31ST(N). Modern Problems of Science and Education, 1-1, 333. EDN VIDYBR. [In Russian]

Strugovets, S. A., Krivosheev, I. A., Galiulin, R. M., Kamaeva, R. F., & Rozhkov, K. E. (2010). Development of a method for parametric diagnostics of the technical condition of a gas turbine engine based on the analysis of blade erosion and patterns of compressor characteristics. Vestnik USATU, 4(39), 3–10. [In Russian]

Chekardovsky, S. M., & Demura, M. N. (2013). Parametric diagnostics of a gas pumping unit. In O. A. Novoselov (Ed.), Proceedings of the International Scientific and Technical Conference Dedicated to the 50th Anniversary of the Tyumen Industrial Institute “Oil and Gas of Western Siberia” (Vol. 1, pp. 117–120). Tyumen Industrial University. EDN SYVJUH.

Chichugin, V. A., & Noskov, S. V. (2011). Method of on-line parametric diagnostics of a gas-pumping aggregate during its operation. Oil and Gas Studies, 5(89), 62–70. – EDN OQPKYF.

Inozemtsev, D. A., Velichko, E. I., Bunyakin, A. V., & Muzykantova, A. V. (2021). Gas turbine driven GPU diagnostics by the gas path parameters. In Proceedings of the IOP Conference Series: Earth and Environmental Science. International Science and Technology Conference “EarthScience” (Vol. 720, p. 012076). https://doi.org/10.1088/1755-1315/720/1/012076. EDN MLEVAT.