Contribution of an external magnetic field to the dynamics of phase separation in a binary magnetic mixture

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2025. Vol. 11. № 3 (43)

Title: 
Contribution of an external magnetic field to the dynamics of phase separation in a binary magnetic mixture


For citation: Gilmanov, A. Ya., Saraeva, N. E., & Shevelev, A. P. (2025). Contribution of an external magnetic field to the dynamics of phase separation in a binary magnetic mixture. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 11(3), 71–92. https://doi.org/10.21684/2411-7978-2025-11-3-71-92

About the authors:

Alexander Ya. Gilmanov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.y.gilmanov@utmn.ru, https://orcid.org/0000-0002-7115-1629

Natalia E. Saraeva, Postgraduate Student, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; natalia.saraeva@yandex.ru, https://orcid.org/0009-0003-8717-3851

Alexander P. Shevelev, Cand. Sci. (Phys.-Math.), Associate Professor, Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.p.shevelev@utmn.ru; ORCID: 0000-0003-0017-4871

Abstract:

Phase separation in polymer mixtures with magnetic nanoparticles is a promising direction in the development of functional membrane materials, especially in the context of controlled pore morphology and selectivity. Modern research shows that the magnetic field can significantly affect the kinetics and structure of phase inversion, but quantitative models that take these effects into account have so far been poorly developed. In this paper, we propose a modified Kahn–Hilliard phase-field model for a two-component magnetic mixture that includes the contribution of an external magnetic field to the free energy of the system. The aim of the study is to analyze the effect of field strength and the effective interaction parameter on the dynamics of phase separation. The novelty of the work lies in the numerical confirmation of the energy mechanism of magnetically induced acceleration of phase separation and morphological ordering, which expands the possibilities of controlled synthesis of porous composites. The model is implemented numerically in the FEniCS environment with subsequent visualization in ParaView. The dynamics of the total free energy G(t) of a two-component mixture is analyzed in a phase-field model taking into account an external magnetic field. Calculations have shown that the magnetic field significantly alters the relaxation process of the system: with certain combinations of the field strength H and the magnetic sensitivity parameter λ, the system reaches an energy minimum faster. For example, at moderate λ, the free energy rapidly decreases to a steady value, whereas for a very strong field
(H = 10000 A/m), the relaxation process stretches over almost the entire simulation interval. The value of G(t) decreases monotonously, and the final energy values become significantly lower as H increases, which indicates an enhanced phase mixing process. At the same time, at sufficiently high λ, the function G(t) increases non-linearly to a stationary value. In the diagrams of phase evolution, the process of increasing free energy is accompanied by a rapid phase separation of the two-component mixture. Thus, the dynamics of free energy confirms the energetic nature of accelerated phase separation: the presence of a magnetic field leads to the transition of the system to a lower energy state and a faster establishment of an equilibrium distribution of components in these modes.

References:

Balescu, R. (1978). Equilibrium and nonequilibrium Statistical Mechanics (Transl. from English and ed. by D. N. Zubarev, Yu. L. Klimontovich). Vol. 1. Mir. [In Russian]

Landau, L. D., & Lifshits, E. M. (1982). Electrodynamics of Continuous Media. Nauka. [In Russian]

Pelevina, D. А. (2016). Shape of the free surface of a magnetic fluid containing a cylindrical concentrator of the magnetic field. Fluid Dynamics, 6, 15–24. https://doi.org/10.7868/S0568528116060104. EDN YSXLDF. [In Russian]

Bender, P., Bogart, L. K., Posth, O. [et al.]. (2017). Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method. Nature. Scientific Reports, 7, 45990. https://doi.org/10.1038/srep45990

Cahn, J. W., & Hilliard, J. E. (1959). Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics, 31, 688–699. https://doi.org/10.1063/1.1730447

Chapman, W. G., Gubbins, K. E., Jackson, G., & Radosz, M. (1989). SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 52, 31–38. https://doi.org/10.1016/0378-3812(89)80308-5

Dan, Xu, Chengcai, Li, Jinyang, Liu, Guojin, Liu, Hailin, Zhu, Huapeng, Zhang, Bin, Yu, & Yuhai, Guo. (2023). PES/Fe3S4@NiO self-cleaning membrane with rapid catalysis for effective emulsion separation and dye degradation. Journal of Membrane Science, 684, 121874. https://doi.org/10.1016/j.memsci.2023.121874

Dikansky, Yu. I., Ispiryan, A. G., Arefyev, I. M., & Kunikin, S. A. (2021). Effective fields in magnetic colloids and features of their magnetization kinetics. The European Physical Journal E, 44, 2. https://doi.org/10.1140/epje/s10189-021-00015-y

FEniCS Project. (n.d.). Cahn–Hilliard Equation Demo. DOLFINx. Retrieved January 4, 2025, from https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_cahn-hilliard.html

Genc, S., & Derin, B. (2014). Synthesis and rheology of ferrofluids: A review. Current Opinion in Chemical Engineering, 3, 118–124. https://doi.org/10.1016/j.coche.2013.12.006

Gooch, J. W. (2011). Flory–Huggins theory. In J. W. Gooch (Ed.), Encyclopedic Dictionary of Polymers. Springer. P. 315. https://doi.org/10.1007/978-1-4419-6247-8_5128

Hosseini, S. M., Afshari, M., Fazlali, A. R., Koudzari Farahani, S., Bandehali, S., Van der Bruggen, B., & Bagheripour, E. (2019). Mixed matrix PES-based nanofiltration membrane decorated by (Fe₃O₄–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chemical Engineering Research and Design, 147, 390–398. https://doi.org/10.1016/j.cherd.2019.05.025

Inguva, P. K., Walker, P. J., Yew, H. W., Zhu, K., Haslam, A. J., & Matar, O. K. 2021. Continuum-scale modelling of polymer blends using the Cahn–Hilliard equation: Transport and thermodynamics. Soft Matter, (17), 5645–5665. https://doi.org/10.1039/D1SM00272D

Ivanov, A. O., & Zubarev, A. (2020). Chain formation and phase separation in ferrofluids: The influence on viscous properties.  Materials, 13(18), 3956. https://doi.org/10.3390/ma13183956

Ivanov, A. O., & Zubarev, A. Yu. (1999). Kinetics of a ferrofluid phase separation induced by an external magnetic field. Journal of Magnetism and Magnetic Materials, 201(1–3), 222–225. https://doi.org/10.1016/S0304-8853(99)00051-7

König, B., Ronsin, O. J. J., & Harting, J. (2021). Two-dimensional Cahn–Hilliard simulations for coarsening kinetics of spinodal decomposition in binary mixtures. Physical Chemistry Chemical Physics, 23(43), 24823–24833. https://doi.org/10.1039/D1CP03229A

Logg, A., Mardal, K.-A., & Wells, G. (Eds.). (2012). Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23099-8

Nady, N., Salem, N., & Kandil, S. H. (2022). Novel magnetic iron–nickel/poly(ethersulfone) mixed matrix membranes for oxygen separation potential without applying an external magnetic field. Nature. Scientific Reports, 12, 13675. https://doi.org/10.1038/s41598-022-16979-6

O’Connell, J. P., & Haile, J. M. (2005). NRTL Model. In Thermodynamics: Fundamentals for Applications. Pp. 636–638, appendices. Cambridge University Press.

Razumov, I. K., & Shmakov, I. G. (2019). The model of decomposition of a Fe–Cu alloy with concentration-depending interatomic interactions. Physics of the Solid State, 61, 952–961. https://doi.org/10.1134/S1063783419060180

Rodríguez-Arco, L., López-López, M. T., Durán, J. D. G., Zubarev, A., & Chirikov, D. (2011). Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. Journal of Physics: Condensed Matter, 23(45), 455101. https://doi.org/10.1088/0953-8984/23/45/455101

Rungsawang, R., da Silva, J., Wu, C.-P., Sivaniah, E., Ionescu, A., Barnes, C. H. W., & Darton, N. J. (2010). Magnetically induced pattern formation in phase separating polymer-solvent–nanoparticle mixtures. Physical Review Letters, 104(25), 255703. https://doi.org/10.1103/PhysRevLett.104.255703

Tsouris, C., & Scott, T. C. (1995). Flocculation of paramagnetic particles in a magnetic field. Journal of Colloid and Interface Science, 171(2), 319–330. https://doi.org/10.1006/jcis.1995.1186

Wienk, I. M., Boom, R. M., Beerlage, M. A. M., Bulte, A. M. W., Smolders, C. A., & Strathmann, H. (1996). Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 113(2), 361–371. https://doi.org/10.1016/0376-7388(95)00256-1

Zazybin, A. G., Rafikova, Kh., Yu, V., Zolotareva, D., Dembitsky, V. M., & Sasaki, T. (2017). Metal-containing ionic liquids: Current paradigm and applications. Russisan Chemical Reviews, 86(12), 1254–1270. https://doi.org/10.1070/RCR4743

Zinadini, S., Zinatizadeh, A. A. L., Rahimi, M., & Vatanpour, V. (2017). Magnetic field-augmented coagulation bath during phase inversion for preparation of ZnFe₂O₄/SiO₂/PES nanofiltration membrane: A novel method for flux enhancement and fouling resistance. Journal of Industrial and Engineering Chemistry, 46, 9–18. https://doi.org/10.1016/j.jiec.2016.08.005