Modeling of horizontal/multi-segment wells using the “multi-segment well” tool

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2025. Vol. 11. № 2 (42)

Title: 
Modeling of horizontal/multi-segment wells using the “multi-segment well” tool


For citation:

Vakhitov, A. R., Deeva, A. E., & Mamedov, M. M. (2025). Modeling of horizontal/multi-segment wells using the “multi-segment well” tool. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 11(2),
158–170. https://doi.org/10.21684/2411-7978-2025-11-2-158-170


About the authors:

Artur R. Vakhitov, Geophysicist, NewTech Services, Tyumen, Russia; Student, Institute of Oil and Gas, Industrial University of Tyumen, Tyumen, Russia; 89048779795@mail.ru



Anastasia E. Deeva, Technician, Gazpromneft-Zapolyarye, Tyumen, Russia; Student, Institute of Oil and Gas, Industrial University of Tyumen, Tyumen, Russia; nyashanastya058@gmail.com

Mikail M. Mamedov, Technician, Gazprom VNIIGAZ; Student, Institute of Oil and Gas, Industrial University of Tyumen, Tyumen, Russia; mikail.mamedov.2003@mail.ru

Abstract:

This study investigates the application of multi-segment well modeling in tNavigator and IPM Prosper software for optimizing the development of hard-to-recover hydrocarbon reserves. Multi-segment wells allow for the accounting of reservoir heterogeneities and enable detailed productivity analysis, significantly impacting results of production and depression calculations. An analytical approach to determining depression provides more accurate data on well performance. A comparative analysis of modeling results in tNavigator and IPM Prosper demonstrates their convergence, confirming the reliability of the obtained data. The integration of these software solutions enhances modeling accuracy and optimizes well operations, ultimately improving production management and increasing overall productivity.

References:

Aliyev, Z. S., & Marakov, D. A. (2020). Gas inflow intensity to a horizontal wellbore and its impact on the length of the horizontal section and well productivity. In S. G. Gorshenin (Ed.), Oil and gas production — the basis for scientific and technological progress and economic stability: Proceedings of the conference dedicated to the 35th anniversary of the Orenburg branch of the Gubkin Russian State University of Oil and Gas (National Research University). RGU. Pp. 303–317. [In Russian]

Aliyev, Z. S., &Marakov, D. A. (2020). Factors, affecting the productivity of horizontal gas and gas condensate wells, and their consideration in the design of field development. Institute of Computer Research. 255 p. [In Russian]

Borisov, Yu. P., Pilatovsky, V. P., & Tabakov, V. P. (1964). Development of oil fields using horizontal and multi-lateral wells. Nedra. 154 p. [In Russian]

Domanyuk, F. N. (2011). Modeling the productivity of oil wells with complex horizontal well trajectories. Proceedings of the Gubkin Russian State University of Oil and Gas, 3(264), 37–47. [In Russian]

Ipatov, А. I., & Malyavko, E. A. (2022). What happens to the inflow profiles of horizontal wells after development. Vertical of Oil and Gas, 6, 110–121. [In Russian]

Ipatov, A. I., Kremenetsky, M. I., & Lazutkin, D. M. Patent (2018). Method for quantifying the inflow profile in low- and medium-flow horizontal oil wells with MGRP (R. F. Patent No. 2702042). Russian Federation, IPC E21B 47/103. Applicant Gazpromneft STC LLC. [In Russian]

Kolev, Zh. M. (2015). Development and investigation of methods for calculating the productivity of oil wells with complex profiles [Doctoral dissertation, Tyumen State Oil and Gas University, Tyumen]. 139 p. [In Russian]

Mikhailov, D. N., Sofronov, I. L., Sushina, M. R., & Kolodezeva, E. D. (2022). Method for detecting fluid inflow and absorption intervals in operating oil and gas wells (R.F. Patent No. 2788999). Russian Federation, IPC E21B 47/103. Applicant Schlumberger Technology B.V. [In Russian]

Mishenin, M. V. (2021). Dynamics of oil production from hard-to-recover reserves in Russia. Interexpo Geo-Siberia, 2(4), 294–301. [In Russian]

Semikin, D. A., Nukhayev, M. T., & Zhakovshchikov, A. V. (2017). Analysis and modeling of fluid inflow based on distributed temperature sensing data in a horizontal well. Expos Oil Gas, 4(57), 39–43. [In Russian]

Sokhoshko, S. K., & Kolev, Zh. M. (2014). Inflow to a well with a complex trajectory in a layered reservoir. Oil Industry, 10, 110–112. [In Russian]

Chang Dinh Tan Si. (2017). Efficiency of bypass systems in well operation. Problems of geology and subsoil development, 2, 159–161. [In Russian]

Sharafutdinov, R. F., Valiullin, R. A., Ramazanov, A. S., & Kosmylin, D. V. 2022. Method for determining operating intervals in operating wells (R. F. Patent No. 2795225). Russian Federation, IPC E21B 47/103. Applicant Ufa University of Science and Technology. [In Russian]

Yakovlev, A. A., Suleymanov, A. G., Fayzullin, I. G., Ipatov, A. I., Kremenetsky, M. I., Shurunov, A. V., Sarapulov, N. P., & Simakov, S. M. (2019). System for long-term distributed monitoring of the inflow profile in a horizontal well equipped with an ECN (R. F. Patent No. 2703055) Russian Federation, IPC E21B 47/103. Applicant Gazpromneft STC LLC. [In Russian]

Yashnev, V. Y. (2015). Features of the application of the Y-tool layout in “Salym Petroleum Development N.V.”. Nedropolzovanie XXI vek = Subsurface Use XXI Century, 6(56), 84–89. [In Russian]

Joshi, S. D. (1988). Augmentation of well productivity with slant and horizontal wells. Journal of Petroleum Technology, 40(6), 729–739. DOI: 10.2118/15375-PA

Kuchuk, F. J., Goode, P. A., Brice, B.W., Sherrard, D. W., & Michael, R. K. (2007). Pressure-transient analysis for horizontal wells. Journal of Petroleum Technology, 42, 974–1031.

Ozkan, E., Sarica, C., & Haci, M. (2007) Influence of pressure drop along the wellbore on horizontal-well productivity. SPE Journal, 4(3), 288–301.

Wang, M., Fan, Z., Zhao, W., Ming, R., et al. (2021). Inflow performance analysis of a horizontal well coupling stress sensitivity and reservoir pressure change in a fractured-porous reservoir. Lithosphere, 1, art. 7024023.