The study of the multilayer CRM model applicability for splitting liquid production of horizontal wells with multistage hydraulic fracturing

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2025. Vol. 11. № 2 (42)

Title: 
The study of the multilayer CRM model applicability for splitting liquid production of horizontal wells with multistage hydraulic fracturing


For citation:

Smirnov, A. Yu., & Rodionov, S. P. (2025). The study of the multilayer CRM model applicability for splitting liquid production of horizontal wells with multistage hydraulic fracturing. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 11(2), 109–125. https://doi.org/10.21684/2411-7978-2025-11-2-109-125


About the authors:

Andrey Yu. Smirnov, Senior Specialist, Department of Geology and Field Development of Uvatneftegaz, Tyumen Petroleum Research Center PJSC Rosneft Oil Company; Postgraduate Student, Department of Fundamental Mathematics and Mechanics, School of Computer Sciences, University of Tyumen, Tyumen, Russia; aysmirnov5@tnnc.rosneft.ru



Sergey P. Rodionov,

Dr. Sci. (Phys.-Math.), Chief Scientific Specialist, Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences; Professor, Department of Fundamental Mathematics and Mechanics, School of Computer Sciences, University of Tyumen, Tyumen, Russia; rodionovsp@bk.ru








Abstract:

Developing multilayer reservoirs with a single grid of horizontal wells is chosen out of economic feasibility. The operating of low-permeability reservoirs often involves hydraulic fracturing. In this approach, it is difficult to determine the contribution of each layer to well production, which makes it impossible to correctly estimate reserve recovery and plan IOR/EOR technologies.

The currently known methods and tools for solving the production separation problem are not accurate enough, and the increasing trend towards faster workflows is leading to a gradual shift away from hydrodynamic modelling and towards simple analytical models. One of such models is the CRM, which requires a minimal set of input data and allows obtaining information on interwell connectivities as well as prediction of production dynamics.

This paper considers the application of the multilayer CRM to calculate production dynamics of horizontal wells by layers with constant or varying fracture productivity factor. The effectiveness of the proposed approach is confirmed by numerical experiments using synthetic hydrodynamic model.

References:

Altunin, A. E., Semukhin, M. V., & Stepanov, S. V. (2012). Applying material balance and a fuzzy sets theory to solve the problem of separating produced liquids during commingled production. Oilfield Engineering, 12, 56–60. [In Russian]

Afanaskin, I. V., Kryganov, P. V., Glushakov, A. A., & Yalov, P. V. (2020). CRM well interference models for evaluating reservoir filtration and volumetric properties from production data. Russian Journal of Cybernetics, 1(1), 16–25. https://doi.org/10.51790/2712-9942-2020-1-1-3 [In Russian]

Bekman, A. D., & Zelenin, D. V. (2021). Application of advanced CRMP for reservoir pressure mapping. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 7(4), 163–180. https://doi.org/10.21684/2411-7978-2021-7-4-163-180 [In Russian]

Beckman, A. D. (2021). New method for splitting production and injection in joint wells using modified CRM model. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 7(3), 106–122. https://doi.org/10.21684/2411-7978-2021-7-3-106-122 [In Russian]

Danko, M. Yu., Brilliant, L. S., & Zavyzlov, A. S. (2019). Application of dynamic material balance method and CRM method (capacitance-resistive models) for reserves assessment in Achimov and Bazhenov reservoirs. Nedropolzovanie XXI vek = Subsurface Use XXI Century, (4), 76–85. [In Russian]

Stepanov, S. V., Vasiliev, V. V., Altunin, A. E. (2015). An improved analytical method for separating production and injection into layers while simultaneously developing them together. Oil industry, 11, 27–31. [In Russian]

Stepanov, S. V., Ruchkin, A. A., Stepanov, A. V. (2018). Analytical method for separating liquid and oil production by formations during their joint development. Oilfield business, 2, 10–17. [In Russian]

Tyulkov, A. T., Permyakov, A. V., Shakirov, R. R. (2021). Production separation using material balance method. Scientific Journal of the Russian Gas Society, 3(31), 25–28. [In Russian]

Shevtsov, N. O., Stepanov, S. V. (2022). Development of the material balance model for consideration of wells productivity index changes. Mathematical Models and Computer Simulations, 34(2), 3–16. [In Russian]

Arps, J. J. (1945). Analysis of decline curves. Transactions of the AIME, 160, 228–247.

Fraguio, M., Lacivita, A., Valle, J., & Marzano, M. (March 15, 2017). Integrating a data driven model into a multilayer pattern waterflood simulator. SPE Latin American And Caribbean Mature Fields Symposium. Society of Petroleum Engineers, Salvador, Bahia, Brazil.

Holanda, R. W., Gildin, E., Jensen, J. L., Lake, L. W., & Kabir, C. S. (2018). A state-of-the-art literature review on capacitance resistance models for reservoir characterization and performance forecasting. Energies, 11, art. 3368.

Lerlertpakdee, P., Jafarpour, B., & Gildin, E. (2014). Efficient production optimization with flow-network models. SPE Journal, 19(6), 1083–1085.

Mamghaderi, A., Aminshahidy, B., & Bazargan, H. (2021). Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with time-correlated model error. Journal of Petroleum Science and Engineering, 198, art. 108152.

Mamghaderi, A., Bastami, A., & Pourafshary, P. (2012). Optimization of waterflooding performance in a layered reservoir using a combination of capacitance-resistive model and genetic algorithm method. Journal of Energy Resources Technology, 135(1), art. 013102.

Moreno G. A. (2013). Multilayer capacitance-resistance model with dynamic connectivities. Journal of Petroleum Science and Engineering, 109, 298–307.

Prakasa, B., Shi, X., Muradov, K., & Davies, D. (October 17, 2017). Novel application of capacitance-resistance model for reservoir characterisation and zonal, intelligent well control. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, Jakarta, Indonesia.

Salehian, M., & Çınar, M. (2019). Reservoir characterization using dynamic capacitance-resistance model with application to shut-in and horizontal. Journal of Petroleum Exploration and Production Technology, 9, 2811–2830.

Sayarpour, M. (2008). Development and application of capacitance-resistive models to water/CO2 floods [Doctoral thesis, The University of Texas, Austin].

Wang S., Zhang Z., Zhang W., Feng O., et al. (2023). Inferring the interwell connectivity of multilayer waterflooded reservoirs accounting for incomplete injection/production profiles. Geoenergy Science and Engineering, 227, art. 211897.

Yousef A. A., Gentil P. H., Jensen J. L., & Lake L. W. (2006). A capacitance model to infer interwell connectivity from production and injection rate fluctuations. SPE Journal, 9, 630–646.