Determining applicability limits for the analytical calculation of the effective radius in a two-capillary channel

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2025. Vol. 11. № 2 (42)

Title: 
Determining applicability limits for the analytical calculation of the effective radius in a two-capillary channel


For citation:

Simonov, O. A., Filimonova, L. N., & Erina, Yu. Yu. (2025). Determining applicability limits for the analytical calculation of the effective radius in a two-capillary channel. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 11(2), 92–108. https://doi.org/10.21684/2411-7978-2025-11-2-92-108


About the authors:

Oleg A. Simonov, Cand. Sci. (Phys.-Math.), Deputy Director, Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences; s_o_a@rambler.ru, https://orcid.org/0000-0003-2362-3588

Lyudmila N. Filimonova,

Cand. Sci. (Phys.-Math.), Junior Researcher, Tyumen Branch of the Institute of Theoretic and Applied Mechanics named after S. A. Khristianovich of the Siberian Branch of the Academy of Sciences; Senior Lecturer, University of Tyumen, Tyumen, Russia; filimonovaln@mail.ru, https://orcid.org/0000-0001-6761-8292



Yuliya Yu. Erina,

Postgraduate Student, Department of Fundamental Mathematics and Mechanics, University of Tyumen; Research Engineer, Tyumen Scientific Centre of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia; erina.yulya@inbox.ru, https://orcid.org/0000-0002-8577-1044



Abstract:

This paper analyzes an approach for calculating the effective radius of a channel consisting of two segments of cylindrical capillaries, through which the flow is hydrodynamically identical to the flow through a capillary with a constant effective radius. The article presents an analytical method for calculating the effective radius, based on the Poiseuille flow equation, which makes this approach a simple and convenient tool for constructing complex capillary models. A limiting factor of this method is its accuracy, requiring the assessment of the problem parameters within which the analytical approach is applicable. To address this, the paper compares the effective radius calculated using the analytical method with the results obtained from numerical experiments in the COMSOL environment. The study describes and analyzes the flow characteristics within such a channel, justifies possible reasons for discrepancies between the analytical approach and the numerical results, and defines the conditions under which the analytical method is applicable. It is shown that, within the framework of the Poiseuille equation, the applicability of the analytical approach is constrained by the geometric characteristics of the channel, such as the radius ratio and the relative channel length. A method for calculating the boundaries of allowable values for the geometric characteristics is proposed, and a graph of isolines for the relative error in the analytical calculation of the effective radius is presented.

References:

Baranova, E. G., Elpatov, A. S., & Kharlashina, S. V. (2020). Investigation of the characteristics of solvers used in Comsol Multiphysics. Aktual’nye Problemy Aviatsii i Kosmonavtiki = Modern Issues of Aviation and Aeronautics, 2, 13–15. [In Russian]

Borzenko, E. I, Ryltseva, K. E., Frolov, O. Yu, & Shrager G. R. (2017). Calculation of the local resistance coefficient of viscous incombressible fluid flow in a pipe with sudden contraction. Tomsk State University Journal of Mathematics and Mechanics, 48, 36−48. [In Russian]

Velizhanin, A. A., & Simonov, O. A. (2017). Experimental study of two-phase liquid flow in a cylindrical capillary. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 3(4), 82–98. [In Russian]

Dyakova, O. A. (2019). Flows of non-Newtonian fluids in channels of various shapes with slip-adhesion conditions on solid walls [Cand. Sc. (Physics and Mathematics) dissertation, Tomsk]. [In Russian]

Kormilitsyn, V. I., Shmyrkov, O. V., & Yushkov, N. B. (2015). Features of fluid flow in a flat channel with variable cross-section under high congestion of obstacles of various types. Doklady Akademii Nauk = Reports of the Academy of Sciences, 461(3), 277–280. [In Russian]

Landau, L. D., & Lifshitz, E. M. (1986). Theoretical physics: Vol. VI. Hydrodynamics (3rd ed.). Nauka. [In Russian]

Romm, E. S. (1985). Structural models of the pore space of rocks. Nedra. [In Russian]

Walter, F. (2013). Solving linear systems of equations: direct and iterative solvers. Comsol.ru: Software for Multiphysics Modeling. http://www.comsol.ru/blogs/solutions-linear-systems-equations-direct-iterative-solvers/ [In Russian]

Shabarov, A. B., Shatalov, A. V., Markov, P. V., & Shatalova, N. V. (2018). Methods for determining relative phase permeability functions in multiphase filtration problems. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 4(1), 79–109. [In Russian]

Shabarov, A. B., Igoshin, D. E., Rostenko, P. M., & Sadykova, A. P. (2022). Digital cluster model of pore space in three-phase flow through porous media. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 8(1), 88–108. [In Russian]

Shabbir, K. U., Izvekov, O. Ya., & Konyukhov, A. V. (2024). Modeling of two-phase flow in porous media using a heterogeneous network model. Computational Research and Modeling, 16(4), 913–925. [In Russian]

Tsykunov, O. I. (2024). Mathematical model of filtration considering capillary forces in a multiporous medium. International Journal of Open Information Technologies, 12(10), 45–54. [In Russian]

Azizian, P., Casals-Terré, J., Ricart, J., & Cabot, J. M. (2023). Capillary-driven microfluidics: Impacts of 3D manufacturing on bioanalytical devices. Analyst, 148, 2657–2675.

Blunt, M. J., Jackson, M. D., Piri, M., & Valvatne, P. H. (2002). Detailed physics, predictive capabilities, and macroscopic consequences for pore-network models of multiphase flow. Advances in Water Resources, 25(8–12), 1069–1089.

Fatikhov, S. Z. (2012). On computing relative permeabilities. Oil and Gas Business, 1, 333–340.

Hagen, G. (1839). Über die Bewegung des Wassers in engen cylindrischen Röhren. Poggendorff‘s Annalen, 46, 423–442.

Lai, B. J., Zhu, L. T., Chen, Z., & Ouyang, B. (2024). Review on blood flow dynamics in lab-on-a-chip systems: An engineering perspective. Chem & Bio Engineering, 1(1), 26–43.

Sadeghnejad, S., Enzmann, F., & Kersten, M. (2021). Digital rock physics, chemistry, and biology: challenges and prospects of pore-scale modeling approach. Applied Geochemistry, 131(1), art. 105028.

Simonov, O. A., Erina, Yu. Yu., & Ponomarev, A. A. (2023). Review of modern models of porous media for numerical simulation of fluid flows. Heliyon, 9(12), 1–15, art. e22292.

Poiseuille, J.-L. M. (1840). Mémoire sur le mouvement des liquides dans les tubes capillaires. Comptes Rendus de l’Académie des Sciences, 11, 961–967.

Xiao, B., Huang, Q., Chen, H., Chen, X., & Long, G. (2021). A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals, 29(1), art. 2150017.