Method for planning petrophysical research to predict the thermopolymer flooding effectiveness with limited core material

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2025. Vol. 11. № 1 (41)

Title: 
Method for planning petrophysical research to predict the thermopolymer flooding effectiveness with limited core material


For citation: Fedorov, K. M., Gilmanov, A. Ya., Shevelev, A. P., & Guseva, D. N. (2025). Method for planning petrophysical research to predict the thermopolymer flooding effectiveness with limited core material. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 11(1), 125-143. https://doi.org/10.21684/2411-7978-2025-11-1-125-143

About the authors:

Konstantin M. Fedorov, Dr. Sci. (Phys.-Math.), Professor, Professor of the Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; k.m.fedorov@utmn.ru, https://orcid.org/0000-0003-0347-3930

Alexander Ya. Gilmanov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.y.gilmanov@utmn.ru, https://orcid.org/0000-0002-7115-1629

Alexander P. Shevelev, Cand. Sci. (Phys.-Math.), Associate Professor, Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.p.shevelev@utmn.ru; ORCID: 0000-0003-0017-4871

Daria N. Guseva, Chief specialist, Tyumen Petroleum Research Center LLC, Tyumen, Russia
dnguseva72@rambler.ru

Abstract:

At the moment, the problems of mathematical statistics related to the planning of experiments and obtaining correlation dependencies are well developed. However, it is especially important to plan experiments in conditions of a limited set of researched samples with a discrete deterministic set of characteristics from several influencing parameters. Therefore, the aim of this work is to plan petrophysical experiments to obtain correlation dependences of the oil displacement coefficient on the polymer concentration, temperature, and permeability of the core sample for subsequent modeling of thermopolymer flooding. The authors propose a unique method for the use of a single core sample in several consecutive experiments related to such technology. Within this approach, a new method has been developed to determine the minimum number of measurements and a reasonable choice of values of the measured parameters to fully cover a given range with a given accuracy. This method is based on the use of central composite rotatable design (CCRD) of experiment of the second order, considering the features of petrophysical filtration experiments. The minimum required sample of rock samples and the values of the influencing parameters were obtained and the procedure for conducting research to obtain an interpolation dependence was justified. Planning the experiment and using mathematical statistics, the authors managed to reduce the number of experiments by 8 times and the amount of core material used by 3 times to obtain the required correlation.

References:

Alibekov, A. K., & Mikhalev, M. A. (2013). The Practice of Using Experiment Planning: For Engineers and Scientists. Dagestan State Technical University. [In Russian]

Afanasieva, N. Yu. (2010). Computational and Experimental Methods of Scientific Experiment. KNORUS. [In Russian]

Ahmetzhanova G. V., & Antonova I. V. (2016). Application of mathematical statistics methods in psychological and pedagogical research. TGU Publising. [In Russian]

Gilmanov, Ya. I., & Yatsenko, V. M. (2023). Assessment of porosity of core samples from non-conventional reservoirs. Oil Industry, (11), 20–25. https://doi.org/10.24887/0028-2448-2023-11-20-25 [In Russian]

Zernin, A. A., Makarova, K. A., & Tyulkova, A. I. (2021). Features of production geophysical and hydrodynamic research of horizontal multilateral wells in the fields Rosneft Oil Company. Oil Industry, (7), 94–98. https://doi.org/10.24887/0028-2448-2021-7-94-98 [In Russian]

Kazakov, A. V. (2014). Experiment Planning and Measurement of Physical Quantities. Publishing House of Perm National Research Polytechnic University. [In Russian]

Mirzajanzade, A. H., & Stepanova, G. S. (1977). Mathematical Theory of Experiment in Oil and Gas Production. Nedra. [In Russian]

Mostovoy, P. Ya., Shakirzyanov, L. N., Ostankov, A. V., Sevryukov, D. A., Oshmarin, R. A., Shakirov, R. R., Grigoriev, G. S., Tokareva, O. V., & Gomulsky, V. V. (2021). Decision making practice of applying electromagnetic surveys in different geological areas and geophysical conditions. Oil Industry, (2), 26–30. https://doi.org/10.24887/0028-2448-2021-2-26-30 [In Russian]

Myltykbaeva, Zh. K., & Kovaleva, G. G. (2020). Method of rotatable central composition planning of the experiment in the study of efficiency disinfectants. Herald of the Kazakh-British Technical University, 17(4), 54–65. Retrieved Jan. 16, 2025, from https://vestnik.kbtu.edu.kz/jour/article/view/246 [In Russian]

Nazarova L. N., & Skorov, D. S. (2020). Integrated technology for influencing kerogen-containing strata of the Bazhenov formation. Oil Industry, (3), 14–17. https://doi.org/10.24887/0028-2448-2020-3-14-17 [In Russian]

Nikitin, O. R. (2012). Theory of Experimental Research Planning. Vladimir State University Publishing House. [In Russian]

Nikiforov, A. I., & Nikanshin D. P. (1998). Particle transfer by two-phase filtration flow. Mathematical Modeling, 10(6), 42–52. https://www.elibrary.ru/evjuqe [In Russian]

Sannikov, R. Kh. (2010). The Theory of Similarity and Modeling. Planning an Engineering Experiment. Ufa State Petroleum Technological University. [In Russian]

Andersen, P. Ø. (2024). The role of core sample geometry on countercurrent spontaneous imbibition: mathematical foundation, examples, and experiments accounting for realistic geometries. SPE Journal, 29(08), 4282–4304. https://doi.org/10.2118/219776-PA

Box, G. E. P., & Draper, N. R. (2007). Response Surfaces, Mixtures, and Ridge Analyses (2nd ed.). Wiley.

da Nobrega Santos, E., de Santana Neto, D. C., de Magalhaes Cordeiro, A. M. T., de Albuquerque Meireles, B. R. L., da Silva Ferreira, V. C., & da Silva, F. A. P. (2023). From waste to wonder: Unleashing the antimicrobial and antioxidant potential of acerola residue using a central composite rotatable design. Journal of Environmental Chemical Engineering, 11(6), Article 111184. https://doi.org/10.1016/j.jece.2023.111184

Danish, M., Pin, Z., Ziyang, L., Ahmad, T., Majeed, S., Yahya, A. N. A., Khanday, W. A., & Khalil, H. P. S. A. (2022). Preparation and characterization of banana trunk activated carbon using H3PO4 activation: A rotatable central composite design approach. Materials Chemistry and Physics, 282(5), Article 125989. https://doi.org/10.1016/j.matchemphys.2022.125989

Fisher, R. A. (1971). The Design of Experiments (9th ed.). Hafner Press.

Jha, A. K., & Sit, N. (2021). Comparison of response surface methodology (RSM) and artificial neural network (ANN) modelling for supercritical fluid extraction of phytochemicals from Terminalia chebula pulp and optimization using RSM coupled with desirability function (DF) and genetic algorithm (GA) and ANN with GA. Industrial Crops and Products, 170, Article 113769. https://doi.org/10.1016/j.indcrop.2021.113769

Jiang, J., James, S. C., & Mojarab, M. (2019). A multiphase, multicomponent reservoir-simulation framework for miscible gas and steam coinjection. SPE Reservoir Evaluation and Engineering, 23(02), 551–565. https://doi.org/10.2118/198905-PA

Jiang, Q., He, Z., Wang, Y., & Wang, J. (2021). Optimizing the working performance of a boat-type tractor using central composite rotatable design and response surface method. Computers and Electronics in Agriculture, 181, Article 105944. https://doi.org/10.1016/j.compag.2020.105944

Kayaroganam, P. (2021). Response Surface Methodology in Engineering Science. Intech Open. https://doi.org/10.5772/intechopen.90965

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization. CRC Press. https://doi.org/10.1201/b17848

Saber, W. I. A., El-Naggar, N. E.-A., El-Hersh, M. S., El-khateeb, A. Y., Elsayed, A., Eldadamony, N. M., & Ghoniem, A. A. (2021). Rotatable central composite design versus artificial neural network for modeling biosorption of Cr6+ by the immobilized Pseudomonas alcaliphila NEWG-2. Scientific Reports, 11(1), Article 1717. https://doi.org/10.1038/s41598-021-81348-8

Zaharia, C., & Suteu, D. (2022). Empirical modeling and optimization by active central composite rotatable design: brilliant red HE-3B dye biosorption onto residual yeast biomass-based biosorbents. Applied Sciences, 12(13), Article 6377. https://doi.org/10.3390/app12136377