Modernization of the hydrogen production unit by pressure swing adsorption to improve product quality

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2024. Vol. 10. № 4 (40)

Title: 
Modernization of the hydrogen production unit by pressure swing adsorption to improve product quality


For citation: Ibragimova, A. T. (2024). Modernization of the hydrogen production unit by pressure swing adsorption to improve product quality. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 10(4), 18–33. https://doi.org/10.21684/2411-7978-2024-10-4-18-33

About the author:

Anastasiya T. Ibragimova, Leading Specialist, Tyumen Petroleum Research Center, Tyumen, Russia; at_ibragimova@tnnc.rosneft.ru, https://orcid.org/0009-0005-9519-0410

Abstract:

The object of this study is a hydrogen production unit with methane steam reforming technology. The article discusses modern trends in the development of hydrogen technologies, methods of hydrogen production, and purification. The main problem in hydrogen production is insufficient purification of the product from contaminants — CO, CO2, and CH4. The authors propose a method for deep purification of hydrogen by pressure swing adsorption (PSA) and the introduction of this technology to improve the whole unit. The results show that the method of methane steam reforming is an effective and cost-effective way to produce hydrogen, and the introduction of an adsorption unit significantly increases the purity of the hydrogen obtained to 99.9% mol. Meanwhile, the technical and economic analysis of the proposed option showed a positive net present value (NPV) in the amount of 45 conventional units, which indicates great potential for implementation. This study can be valuable for enterprises of hydrogen technologies development and for assessing the potential benefits of using PSA.

References:

Blinov, D. V., Borzenko, V. I., Bezdudny, A. V., & Kuleshov, N. V. (2021). Prospective metal hydride hydrogen storage and purification technologies. Power Engineering: Research, Equipment, Technology, 23(2), 149–160. https://doi.org/10.30724/1998-9903-2021-23-2-149-160 [In Russian]

Dunikov, D. O. (Ed.). (2017). Hydrogen Energy Technologies. Joint Institute for High Temperatures of the Russian Academy of Sciences. [In Russian]

Ievlev, V. M., Dontsov, A. I., Prizhimov, A. S., Novikov, V. I., & Roshan, N. R. (2019). Membranes for deep hydrogen purification: from fundamental research to practical implementation. In Modern Materials and Advanced Manufacturing Technology (MMAMT-2019): Abstracts of Reports of the International Scientific Conference, June 25–28, 2019 (p. 129). POLYTECH-PRESS. https://www.elibrary.ru/nvgcvq [In Russian]

Kodryanu, N. P., Ishmurzin, A. A., Daudi, D. I., Nasirov, I. R., & Chernykh, S. P. (2022). Theoretical basis and practical analysis of the technologies for the hydrogen strategy of the Russian Federation. Gas Industry, (1), 56–70. Retrieved Dec. 12, 2024, from https://neftegas.info/magazines/gas-industry/1/16 [In Russian]

Meiers, R. A. (2011). The Main Processes of Oil Refining. Professiya. [In Russian]

Slovetskiy, D. S. (2010). Ultrapure hydrogen. The Chemical Journal, (1-2), 33–35. Retrieved Dec. 12, 2024, from https://tcj.ru/wp-content/uploads/2013/12/2010_1-2_33-35_sverhchisty-vodorod.pdf [In Russian]

Taramov, Yu. Kh., Akhyadov, R. I., & Elmurzaev, A. A. (2021). Hydrogen production by electrolysis of water from polymer electrolyte membrane (PEM). Herald of GSTOU. Technical Sciences, 17(4), 33–37. https://www.elibrary.ru/cydnvj [In Russian]

Kalman, V., Voigt, J., Jordan, C., & Harasek, M. (2022). Hydrogen purification by pressure swing adsorption: high-pressure PSA performance in recovery from seasonal storage. Sustainability, 14(21), Article 14037. https://doi.org/10.3390/su142114037

Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). Verfahrensübersicht zur Erzeugung von Wasserstoff durch Erdgas-Pyrolyse. Chemie Ingenieur Technik, 92(8), 1023–1032. https://doi.org/10.1002/cite.202000021

Sharma, S., & Ghoshal, S. K. (2015). Hydrogen the future transportation fuel: from production to applications. Renewable and Sustainable Energy Reviews, 43, 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093

Upham, D. C., Agarwal, V., Khechfe, A., Snodgrass, Z. R., Gordon, M. J., Metiu, H., & McFarland, E. W. (2017). Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science, 358(6365), 917–921. https://doi.org/10.1126/science.aao5023