The design of a reactor for synthesis of nanostructured fibers from associated petroleum gas

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2024. Vol. 10. № 3 (39)

Title: 
The design of a reactor for synthesis of nanostructured fibers from associated petroleum gas


For citation: Khlopotova, E. A., & Kislitsin, A. A. (2024). The design of a reactor for synthesis of nanostructured fibers from associated petroleum gas. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 10(3), 6–23. https://doi.org/10.21684/2411-7978-2024-10-3-6-23

About the authors:

Ekaterina A. Khlopotova, Postgraduate Student, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Technical Manager, Gazpromneft Science and Technology Center, Tyumen, Russia; katya.hlopotova@gmail.com, https://orcid.org/0009-0007-8525-1800

Anatoliy A. Kislitsin, Dr. Sci. (Phys.-Math.), Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.a.kislicyn@utmn.ru, https://orcid.org/0000-0003-3863-0510

Abstract:

This article shows the relevance of designing a mobile-but-new reactor for the utilization of associated petroleum gas, as associated petroleum gas flaring causes irrepa­rable environmental damage. Yet for the processing of associated gas extracted from small fields to be economically profitable, the resulting products must have a large added value. Such products can be nanomaterials, such as carbon nanofiber. Based on the review of published reactor designs, the satisfaction criteria are formulated. The results show no reactors satisfying all the necessary conditions, so the option closest to solving the problem was chosen. A suitable system of equations for the chemical kinetics of the processing associated petroleum gas into nanostructured fiber has been formulated. Further work has been outlined, which includes a) the study on the possibilities of increasing the yield of target products by optimizing the selection of thermodynamic properties; b) the development of a mathematical model of the reactor which considers mass and heat transfer, as well as changing the composition of the starting material; c) determining the optimal conditions of the carbon nanofiber synthesis process and developing practical recommendations for achieving and maintaining these conditions.

References:

Agaurov, S. Yu., & Gunbin, I. L. (2018). Unconventional utilization of associated petro­leum gas. Processing of associated gas into natural components of oil. Business Magazine “Neftegaz.RU”, (4), 44–47. [In Russian]

Altunina, L. K., Svarovskaya, L. I., Yashchenko, I. G., & Alekseeva, M. N. (2014). Environmental pollution when burning associated petroleum gas on the territory of oil producing enterprises. Khimiya v interesakh ustoychivogo razvitiya, 22(3), 217–222. [In Russian] (English version: Chemistry for Sustainable Development, 22(3), 213–218)

Andrejkina, L. V. (2005). Composition, Properties and Processing of Associated Gases from Oil Fields in Western Siberia [Cand. Sci. (Tech.) dissertation abstract, Ufa State Petroleum Technological University]. [In Russian]

Babaev, A. A., Zobov, M. E., Terukov, E. I., & Tkachev, A. G. (2019). Production and characterization of carbon nanofibers. Herald of Dagestan State University. Series 1: Natural Sciences, 34(1), 7–14. https://doi.org/10.21779/2542-0321-2019-34-1-7-14 [In Russian]

Bichurin, A. A. (2015). Utilization of associated petroleum gas by injecting a water-gas mixture into the formation. Inzhenernaya praktika, (06–07), 121–132. [In Russian]

Borschenko, S. D., Kobzeva, D. D., & Kondakova, V. V. (2023). Ecological and economic justification of the associated petroleum gas utilization project of PJSC “Slavneft”. Economic Systems, 16(1), 190–201. https://doi.org/10.29030/2309-2076-2023-16-1-190-201 [In Russian]

Vasiljev, S. A., Ezdin, B. S., Yanshole, L. V., Pakharukov, Yu. V., Kalyada, V. V., & Shabiev, F. K. (2023). The features of acetylene pyrolysis in an atmosphere of inert gases in a cyclic compression reactor. Technical Physics Letters, 49(4), 31–34. https://doi.org/10.21883/PJTF.2023.04.54524.19436 [In Russian]

Dementiev, K. I., & Popov, A. Yu. (2022). Processing of hydrocarbon raw materials. In D. O. Skobelev (Ed.), Encyclopedia of Technologies 2.0: Chemical Complex (pp. 139–254). Renome. [In Russian]

Ezdin, B. S., Nikiforov, A. A., Zarvin, A. E., Kalyada, V. V., & Khodakov, M. D. (2013). Use of the compression reactor to process the associated gas. Modern Science: Researches, Ideas, Results, Technologies, (1), 207–209. [In Russian]

Ezdin, B. S., Kalyada, V. V., Vasiliev, S. A., Shabiev, F. K., Pakharukov, Yu. V., & Safargaliev, R. F. (2022a). Research on the thermodynamic conditions for the pyrolysis of monosilane in a cyclic compression reactor. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 8(4), 8–20. https://doi.org/10.21684/2411-7978-2022-8-4-8-20 [In Russian]

Ezdin, B. S., Vasiljev, S. A., Yatsenko, D. A., Fedorov, V. E., Ivanova, M. N., Kalyada, V. V., Pakharukov, Yu. V., Shabiev, F. K., & Zarvin, A. E. (2022b). The synthesis of carbon nanoparticles in a compression reactor in the atmosphere of buffer gases. Siberian Journal of Physics, 17(3), 29–46. https://doi.org/10.25205/2541-9447-2022-17-3-29-46 [In Russian]

Zherlitsyn, A. G., Sidorova, O. I., Shiyan, V. P., Medvedev, Yu. V., & Galanov, S. I. (2010). Obtaining carbon nanomaterial and hydrogen from natural gas under the influence of microwave radiation. Gazokhimiya, (6), 39–43. Retrieved Feb. 21, 2022, from https://cyberleninka.ru/article/n/poluchenie-uglerodnogo-nanomateriala-i-vodoroda-iz-prirodnogo-gaza... [In Russian]

Zarvin, A. E., Kalyada, V. V., Yaskin, A. S., Khodakov, M. D., Korobeishchikov, N. G., Khudozhitkov, V. E., Madirbaev, V. Z., & Ezdin, B. S. (2016). An experimental apparatus for plasmochemical studies. Pribory i tekhnika eksperimenta, (6), 50–56. https://doi.org/10.7868/S0032816216060136 [In Russian] (English version: Instruments and Experimental Techniques, 59(6), 822–828. https://doi.org/10.1134/S0020441216060117)

Zozulya, G. P., Kuznetsov, N. P., & Yagafarov, A. K. (2006). Physics of Oil and Gas Reservoir. Tyumen State Oil and Gas University. [In Russian]

Kiryushin, P. A., Knizhnikov, A. Yu., Kochi, K. V., Puzyanova, T. A., & Uvarov, S. A. (2013). Associated Petroleum Gas in Russia: “No Burning, Recycle!” Analytical Report on the Economic and Environmental Costs of Flaring Associated Petroleum Gas in Russia. World Wildlife Fund (WWF). [In Russian]

Kolenchukov, O. A., Petrovsky, E. A., & Smirnov, N. A. (2021). Technology for the production of carbon nanomaterials by pyrolysis. Oil and Gas Studies, (4), 95–108. https://doi.org/10.31660/0445-0108-2021-4-95-108 [In Russian]

Mishakov, I. V., Buyanov, R. A., Zaikovskii, V. I., Streltsov, I. A., & Vedyagin, A. A. (2008a). Catalytic synthesis of nanosized feathery carbon structures via the carbide cycle mechanism. Kinetika i kataliz, 49(6), 916–921. [In Russian] (English version: Kinetics and Catalysis, 49(6), 868–872. https://doi.org/10.1134/S0023158408060116)

Mishakov, I. V., Buyanov, R. A., Chesnokov, V. V., Streltsov, I. А., & Vediagin, А. А. (2008b). Production of nano-size carbon filaments by carbide cycle mechanism. Kataliz v promyshlennosti, (2), 26–31. [In Russian]

Nagornov, M. P., & Sheikina, M. A. (2022). Associated petroleum gas as a valuable raw material of oil production. In Proceedings of the 49th All-Russian Research and Technical Conference for Young Researchers, Postgraduates, and Students, on the 90th Anniversary of Bashkir Oil (pp. 84–88). [In Russian]

Nenaglyadkin, I. S. (2005). Mathematical Modeling and Optimization of Obtaining Carbon Nanotubes (Nanofibers) [Cand. Sci. (Tech.) dissertation, D. I. Mendeleev Russian University of Chemical Technology]. [In Russian]

Popov, A. A., Shubin, Yu. V., Bauman, Yu. V., Plyusnin, P. E., Sharafutdinov, M. R., & Mishakov, I. V. (2020). Synthesis and study of catalysts based on Co-Pt, Ni-Pt porous alloys for the preparation of carbon nanostructured fibers. In Advanced Technologies and Materials: Proceedings of Research Conference (pp. 110–113). [In Russian]

Pyatibratov, P. V., Bykadorov, A. V., & Zhuga, Ye. S. (2014). Efficiency enhancement of associated petroleum gas injection in the conditions of the oil treatment system with two-stage separation. Territory “Neftegaz”, (11), 42–46. [In Russian]

Skichko, E. A., Kruchinin, K. V., Rakov, E. G., & Koltsova, E. M. (2012). Development of program complex for modeling synthesis kinetics and structure of carbon nanotubes, nanofibers. ChemChemTech (=Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya), 55(2), 93–97. [In Russian]

Khlopotova, E. A. (2022a). Extraction of nanostructured fibers from petroleum gas by catalytic pyrolysis. In Oil and Gas — 2022: Proceedings of the 76th International Young Researchers’ Conference (pp. 150–151). [In Russian]

Khlopotova, E. A. (2022b). Improving the efficiency of field development through the monetization of nanostructured materials extracted from hydrocarbon gases by catalytic pyrolysis. In Technologies for the Development of Oil, Gas, and Gas-Condensate Fields: Proceedings of the 5th Research and Technical Conference (pp. 71–73). Tomsk State University. [In Russian]

Awad, A., Salam, A., & Abdullah, B. (2017). Hydrogen production by decomposition of methane and methanol mixture over Ni-Pd/Al2O3. Journal of the Japan Institute of Energy, 96(10), 445–450.

Ezdin, B., Pakharukov, Yu., Kalyada, V., Shabiev, F., Zarvin, A., Yatsenko, D., Safargaliev, R., Ichshenko, A., & Volodin, V. (2022). The novel method of synthesis of nanostructured materials for the enhancing recovery in oil displacement technologies. Catalysis Today, 397–399, 249–256. https://doi.org/10.1016/j.cattod.2021.09.024

Ezdin, B., Vasiljev, S., Yatsenko, D., Fedorov, V., Ivanova, M., Kalyada, V., Pakharukov, Yu., Shabiev, F., & Zarvin, A. (2023). Synthesis of carbon nanoparticles in a compression reactor in atmosphere of buffer gases. Technical Physics, 68(1), 18–26. https://doi.org/10.1134/S1063784223010024

Fidalgo, B., Muradov, N., & Menéndez, J. A. (2012). Effect of H2S on carbon-catalyzed methane decomposition and CO2 reforming reactions. International Journal of Hydrogen Energy, 37(19), 14187–14194. https://doi.org/10.1016/j.ijhydene.2012.07.090

Kostakova, E., Gregr, J., Meszaros, L., Chotebor, M., Nagy, Z. K., Pokorny, P., & Lukas, D. (2012). Laboratory synthesis of carbon nanostructured materials using natural gas. Materials Letters, 79, 35–38. https://doi.org/10.1016/j.matlet.2012.03.101

Malaika, A., & Kozłowski, M. (2009). Influence of ethylene on carbon-catalysed decomposition of methane. International Journal of Hydrogen Energy, 34(6), 2600–2605. https://doi.org/10.1016/j.ijhydene.2009.01.052

Muradov, N. Z. (1998). CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy & Fuels, 12(1), 41–48. https://doi.org/10.1021/ef9701145

Pinilla, J. L., Suelves, I., Lázaro, M. J., & Moliner, R. (2009). Influence on hydrogen production of the minor components of natural gas during its decomposition using carbonaceous catalysts. Journal of Power Sources, 192(1), 100–106. https://doi.org/10.1016/j.jpowsour.2008.12.074