Release:
2024. Vol. 10. № 2 (38)About the authors:
David Yu. Shengeliya, Postgraduate Student, Department of Software, School of Computer Science, University of Tyumen, Tyumen, Russia; d.y.shengeliya@utmn.ru, https://orcid.org/0009-0004-5222-9672Abstract:
This article presents a comparative analysis of various filtering methods for synthetic measurements that simulate data from well test analysis (WTA).Keywords:
References:
Asalkhuzina, G. F., Davletbaev, A. Ya., Khabibullin, I. L., & Akhmetova, R. R. (2020). On the selection of suitable operate durations for injection tests in low permeability reservoirs. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 6(1), 135–149. https://doi.org/10.21684/2411-7978-2020-6-1-135-149 [In Russian]
Brilliant, L. S., Dulkarnaev, M. R., Danko, M. Yu., Elisheva, A. O., Nabiev, D. Kh., Khutornaya, A. I., & Malkov, I. N. (2022). Oil production management based on neural network optimization of well operation at the pilot project site of the Vatyeganskoe field (Territorial Production Enterprise Povkhneftegaz). Georesources, 24(1), 3–15. https://doi.org/10.18599/grs.2022.1.1 [In Russian]
Bukhmastova, S. V., Fakhreeva, R. R., Pityuk, Yu. A., Davletbaev, A. Ya., Azarova, T. P., Farger, D. V., & Yakupov, R. F. (2020). Approbation of MLR and CRMIP methods in research of well interference. Oil Industry Journal, (8), 58–62. https://doi.org/10.24887/0028-2448-2020-8-58-62 [In Russian]
Esipov, D. V., Kuranakov, D. S., Lapin, V. N., & Cherny, S. G. (2014). Mathematical models of hydraulic fracturing. Computational Technologies, 19(2), 33–61. [In Russian]
Zaikin, A. A., & Kareev, I. A. (2020). Modeling fluid flows in oil fields using the Kalman filter. Itogi nauki i tekhniki. Seriya “Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory”, 175, 27–35. https://doi.org/10.36535/0233-6723-2020-175-27-35 [In Russian]
Kovalenko, I. V. (2023). Hydrodynamic simulation of horizontal wells by multi-stage hydraulic fracturing of a formation taking into account pressure losses due to streamline convergence. Oilfield Engineering, (2), 26–28. https://doi.org/10.33285/0207-2351-2023-2(650)-26-28 [In Russian]
Suleimanov, B. A., Dyshin, O. A., & Isaev, R. Zh. (2014). Interpretation of pressure built-up curves on the basis of analysis of bottomhole pressure detrministic moments. Oilfield Engineering, (1), 12–23. [In Russian]
Ansari, H. R., & Gholami, A. (2015). An improved support vector regression model for estimation of saturation pressure of crude oils. Fluid Phase Equilibria, 402, 124–132. https://doi.org/10.1016/j.fluid.2015.05.037
Apio, A., Dambros, J. W., Farenzena, M., & Trierweiler, J. O. (2019). Comparison of Kalman filter-based approaches for permanent downhole gauge pressure estimation in offshore oil production. Journal of Petroleum Science and Engineering, 182, Article 106254. https://doi.org/10.1016/j.petrol.2019.106254
Aung, Z., Mikhaylov, I. S., & Thu Aung, Y. (2020). Application of support vector system for solving problems of classification and forecasting of oil wells. In 2020 IEEE Conference of Russian young researchers in electrical and electronic engineering (EIConRus) (pp. 568–572). https://doi.org/10.1109/EIConRus49466.2020.9039343
Awad, M., & Khanna, R. (2015). Support vector regression. In Efficient learning machines (pp. 67–80). Apress. https://doi.org/10.1007/978-1-4302-5990-9_4
Jiang, J., Ren, H., & Zhang, M. (2022). A convolutional autoencoder method for simultaneous seismic data reconstruction and denoising. IEEE Geoscience and Remote Sensing Letters, 19, Article 7503405. https://doi.org/10.1109/LGRS.2021.3073560
Khoukhi, A., Oloso, M., Elshafei, M., Abdulraheem, A., & Al-Majed, A. (2011). Support vector regression and functional networks for viscosity and gas/oil ratio curves estimation. International Journal of Computational Intelligence and Applications, 10(03), 269–293. https://doi.org/10.1142/S1469026811003100
Kuester, J., Gross, W., & Middelmann, W. (2021). 1D-convolutional autoencoder based hyperspectral data compression. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2021, 15–21. https://doi.org/10.5194/isprs-
archives-XLIII-B1-2021-15-2021
Lei, J., Fan, Y., Li, Y., & Xu, T. (2020). Data analysis of hydraulic fracturing pressure in unconventional oil and gas fields. IOP Conference Series: Earth and Environmental Science, 558(2), Article 022057. https://doi.org/10.1088/1755-1315/558/2/022057
Nikoofard, A., Aarsnes, U. J. F., Johansen, T. A., & Kaasa, G.-O. (2015). Estimation of states and parameters of a drift-flux model with unscented Kalman filter. IFAC-PapersOnLine, 48(6), 165–170. https://doi.org/10.1016/j.ifacol.2015.08.026
Osman, M. S., & Stewart, G. (1997, March 15–18). Pressure data filtering and horizontal well test analysis case study [Conference paper SPE-37802-MS]. Middle East Oil Show and Conference, Bahrain. https://doi.org/10.2118/37802-MS
Unneland, T., Manin, Y., & Kuchuk, F. (1998). Permanent gauge pressure and rate measurements for reservoir description and well monitoring: Field cases. SPE Reservoir Evaluation & Engineering, 1(3), 168–176. https://doi.org/10.2118/38658-PA
Vaferi, B., Eslamloueyan, R., & Ayatollahi, Sh. (2011). Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks. Journal of Petroleum Science and Engineering, 77(3–4), 254–262. https://doi.org/10.1016/j.petrol.2011.03.002