Mathematical modeling of the duration and frequency of water consumption by water collection devices of a residential building

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2024. Vol. 10. № 2 (38)

Title: 
Mathematical modeling of the duration and frequency of water consumption by water collection devices of a residential building


For citation: Polivanov, D. E., Semenov, A. A., & Movsesova, L. V. (2024). Mathematical modeling of the duration and frequency of water consumption by water collection devices of a residential building. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 10(2), 69–87. https://doi.org/10.21684/2411-7978-2024-10-2-69-87

About the authors:

Dmitrii E. Polivanov, Postgraduate Student, Department of Information Systems and Technologies, Faculty of Environmental Engineering and Municipal Services, Saint Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russia; dmitry_polivanov@mail.ru, https://orcid.org/0000-0002-4215-1208

Alexey A. Semenov, Cand. Sci. (Tech.), Associate Professor, Department of Information Systems and Technologies, Faculty of Environmental Engineering and Municipal Services, Saint Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russia; sw.semenov@gmail.com, https://orcid.org/0000-0001-9490-7364

Liya V. Movsesova, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Informatics, Faculty of Environmental Engineering and Municipal Services, Saint Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russia; movse@lan.spbgasu.ru, https://orcid.org/0000-0002-0776-0374

Abstract:

The actual operating modes of water supply systems cannot be characterized in sufficient detail and accurately by several values obtained during calculations using traditional deterministic methods and models. Nevertheless, the task of obtaining comprehensive information about the modes of operation of water supply systems can be solved using simulation modeling, which allows detailed analysis of the variability of water consumption over time. At the same time, the most important components of this process, which should be taken into account when modeling, are the intensity, duration and frequency of water consumption.
This article discusses the mathematical description of the variability of the duration and frequency of water consumption by the most common types of water collection devices (kitchen sink and bathtub faucets / shower cubicle, toilet bowl with flush tank, washing machine and dishwasher) using water from the water supply system of a residential building.
The aim of the work is to evaluate and substantiate the theoretical laws of the distribution of the duration of water consumption by the most common types of water collection devices, as well as the frequency (probability) of their use during the most characteristic period of water consumption (day).
The paper presents the results of a study of the duration and frequency of water consumption by the most common types of water collection devices. The analysis of histograms and graphs based on the obtained statistical data, as well as estimates of the main numerical characteristics, is presented. The evaluation and substantiation of the theoretical laws of the distribution of duration and frequency (probability) of water consumption has been carried out.
As a result of the performed research, a variant of the mathematical description of the nature of variability in the duration of periods of continuous water consumption by the most common types of water collection devices, as well as the frequency (probability) of their use during the day, is proposed.

References:

Volgin, P. N., & Maslennikova, T. N. (2010). Determination of theoretical law for random distribution in simulation model. Morskaya radioelektronika, (3–4), 74–78. [In Russian]

Ignatchik, V. S., Sarkisov, S. V., & Obvintsev, V. A. (2017). Research of water consumption hour inequality coefficients. Water and Ecology: Problems and Solutions, (2), 27–39. [In Russian]

Isaev, V. N., & Mkhitaryan, M. G. (2003). Analysis of methods for determining costs in the internal water supply. Santechnika, (5), 6–11. [In Russian]

Karambirov, S. N., & Bekisheva, L. B. (2012). About some statistical regularities of water consumption in water supply systems. Prirodoobustrojstvo, (4), 45–48. [In Russian]

Karambirov, S. N., Umansky, P. M., & Bekisheva, L. B. (2012). Distribution of hydraulic parameters in the water supply and distribution system under design mode and postfault conditions. Prirodoobustrojstvo, (4), 48–51. [In Russian]

Karambirov, S. N., Manukyan, D. A., & Bekisheva, L. B. (2013). Evaluating the reliability of water delivery by water supply systems. Doklady Rossijskoj akademii selskohozyajstvennyh nauk, (6), 63–65. [In Russian]

Kolmogorov, A. N. (1986). Probability theory and mathematical statistics. Nauka. [In Russian]

Lemeshko, B. Yu. (1998). Asymptotically optimum grouping of observations in goodness-of-fit tests. Industrial Laboratory, 64(1), 59–67.

Lemeshko, B. Yu., Lemeshko, S. B., & Semenova, M. A. (2018). To question of the statistical analysis of big data. Tomsk State University Journal of Control and Computer Science, (44), 40–49. https://doi.org/10.17223/19988605/44/5 [In Russian]

Nikolenko, I. V., & Ryzhakov, A. N. (2019). Nonlinear model optimization parameters of power units a pump station pumping a water supply system. News of Higher Educational Institutions. Construction, (4), 47–63. [In Russian]

Novitsky, N. N., & Vanteeva, O. V. (2008). Some problems and probabilistic techniques for simulating hydraulic regimes in pipeline systems. Saint Petersburg Polytechnical University Journal, (1), 68–75. [In Russian]

Novitsky, N. N., & Vanteeva, O. V. (2011). Stochastic modeling of flow distribution in hydraulic circuit. Izvestiâ akademii nauk SSSR. Ènergetika, (2), 122–131. [In Russian]

Polivanov, D. E., & Semenov, A. A. (2023a). Investigation of the mode of water extraction by a mixer from the water supply system. News of the Kazan State University of Architecture and Engineering, (2), 60–69. [In Russian]

Polivanov, D. E., & Semenov, A. A. (2023b). BIM technologies with programming elements in the analysis of operating modes of internal water supply networks of buildings. In BIM in Construction & Architecture: Proceedings of 6th International Conference (BIMAC 2023) (pp. 81–91). Saint Petersburg State University of Architecture and Civil Engineering. [In Russian]

Polivanov, D. E., & Semenov, A. A. (2024). Intensity of water consumption in separate water collection points of internal water supply system. Vestnik MGSU, 19(1), 94–104. https://doi.org/10.22227/1997-0935.2024.1.94-104 [In Russian]

Sayriddinov, S. Sh. (2020). About features of water consumption calculation when designing water supply systems of high-rise buildings. Urban Сonstruction and Architecture, 10(2), 29–35. https://doi.org/10.17673/Vestnik.2020.02.5 [In Russian]

Salugin, A. N., & Balkushkin, R. N. (2021). On application of artificial neural networks for modeling of water consumption. Water Sector of Russia: Problems, Technologies, Management, (1), 70–85. https://doi.org/10.35567/1999-4508-2021-1-5 [In Russian]

Ministry of Construction, Housing and Utilities. (2020). Internal water supply and sewerage of buildings (Code of rules No. 30.13330.2020). [In Russian]

Chupin, V. R., & Dushin, A. S. (2009). The assessment of reliability of water provision of water supply and distribution systems under operation. Proceedings of Irkutsk State Technical University, (3), 186–191. [In Russian]

Alvisi, S., Franchini, M., & Marinelli, A. (2003). A stochastic model for representing drinking water demand at residential level. Water Resources Management, 17(3), 197–222. https://doi.org/10.1023/A:1024100518186

Blokker, E. J. M., & Vreeburg, J. H. G. (2012). Monte Carlo simulation of residential water demand: A stochastic end-use model. In Impacts of Global Climate Change (pp. 1–12). https://doi.org/10.1061/40792(173)34

Buchberger, S. G., & Wu, L. (1995). Model for instantaneous residential water demands. Journal of Hydraulic Engineering, 121(3), 232–246.

Buchberger, S. G., & Wells, G. J. (1996). Intensity, duration, and frequency of residential water demands. Journal of Water Resources Planning and Management, 122(1), 11–19. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:1(11)

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

García, V. J., García-Bartual, R., Cabrera, E., Arregui, F., & García-Serra, J. (2004). Stochastic model to evaluate residential water demands. Journal of Water Resources Planning and Management, 130(5), 386–394. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:5(386)

Mazzoni, F., Alvisi, S., Franchini, M., & Blokker, M. (2023). Exploiting high-resolution data to investigate the characteristics of water consumption at the end-use level: A Dutch case study // Water Resources and Industry. Vol. 29. Article 100198. https://doi.org/10.1016/j.wri.2022.100198

Moughton, L. J., Buchberger, S. G., Boccelli, D. L., Filion, Y. R., & Karney, B. W. (2012). Effect of time step and data aggregation on cross correlation of residential demands. Water Distribution Systems Analysis Symposium 2006 (pp. 1–11). https://doi.org/10.1061/40941(247)42

Sturges, H. A. (1926). The choice of a class interval. Journal of the American Statistical Association, 21(153), 65–66. https://doi.org/10.1080/01621459.1926.10502161

Vertommen, I., Magini, R., da Conceição Cunha, M., & Guercio, R. (2012). Water demand uncertainty: The scaling laws approach. In A. Ostfeld (Ed.), Water Supply System Analysis. IntechOpen. https://doi.org/10.5772/51542

Vertommen, I., Magini, R., & da Conceição Cunha, M. (2015). Scaling water consumption statistics. Journal of Water Resources Planning and Management, 141(5), Article 04014072. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000467