Consideration of geomechanic effects during hydrodynamic model of weakly-cemented reservoir setting

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2024. Vol. 10. № 2 (38)

Title: 
Consideration of geomechanic effects during hydrodynamic model of weakly-cemented reservoir setting


For citation: Zubareva, I. A., Stepanov, A. V., & Gavris, A. S. (2024). Consideration of geomechanic effects during hydrodynamic model of weakly-cemented reservoir setting. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 10(2), 56–68. https://doi.org/10.21684/2411-7978-2024-10-2-56-68

About the authors:

Irina A. Zubareva, Specialist, Tyumen Petroleum Research Center, Tyumen, Russia; iazubareva-tnk@tnnc.rosneft.ru

Anatoliy V. Stepanov, Expert, Tyumen Petroleum Research Center, Tyumen, Russia; Cand. Sci. (Phys.-Math.), Associate Professor, Specialized Department of Tyumen Petroleum Research Center, Higher School of Engineering EG, Industrial University of Tyumen, Tyumen, Russia; avstepanov5@tnnc.rosneft.ru

Alexander S. Gavris, Senior Manager, Tyumen Petroleum Research Center, Tyumen, Russia; asgavris@tnnc.rosneft.ru

Abstract:

The article offers an approach to tuning of heavy oil deposition model from weakly-cemented reservoir with geomechanic effects. This effects appear as changing permeability at the downhole zone near the injection well. Researchers think that the nature of low-density zones occurrence related to increasing of the resistance factor which is influenced with increasing of filtration velocity. High filtration velocity is caused by polymer flooding increasing. This work was made with basis on hydrodynamic model of the pilot area where are the experiments of displacement of heavy oil during polymer flooding. There are not only well history-matching but assessment of hydrodynamic model prediction ability. Keeping of geomechanic effects allows to achieve the adequate reproduction dynamic of fact bottom-hole pressure during polymer solution injection. Application of the given approach leads to uncertainty reduction and improved prediction reliability.

References:

Barenblatt, G. I., Entov, V. M., & Rizhik, V. M. (1984). Liquid and gas movement in the natural strata. Nedra. [In Russian]

Basniev, K. S., Kadet, V. V., Kanevskaya, R. D., & Fomin, A. V. (1998). Analysis of new methods and flooding agents for increasing oil recovery coefficient effectiveness. Gubkin University. [In Russian]

Berlin, A. V. (2011). Physical and chemical methods of enhanced oil recovery. Polymer flooding (review). Part I. Scientific and Technical Bulletin of OJSC “NK “Rosneft”, (1), 16–25. [In Russian]

Bozhenyuk, N. N., & Strekalov, A. V. (2016). Some methods of simulation model history-matching. Oil and Gas Business, 14(2), 42–49. [In Russian]

Goncharov, M. A. (1998). The mechanism of geosynclinal folding. Nedra. [In Russian]

Zheltov, Yu. P. (1966). Rocks deformation. Nedra. [In Russian]

Zemtsov, Yu. V., & Mazaev, V. V. (2021). Physical-chemical methods of increasing oil recovery today. Izdatelskie resheniya. [In Russian]

Ivantsov, N. N. (2018). A study of polymer solutions filtration in unconsolidated reservoir. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 4(2), 136–150. https://doi.org/10.21684/2411-7978-2018-4-2-136-150 [In Russian]

Ivantsov, N. N., & Pavlov, V. A. (2019). Substantiation of optimal modes of horizontal wells operation in weakly-cemented reservoirs. Oilfield Engineering, (11), 92–95. https://doi.org/10.30713/0207-2351-2019-11(611)-92-95 [In Russian]

Kanevskaya, R. D. (2002). Mathematical modeling of hydrodynamic processes of hydrocarbons’ fields development. Institute of Computer Science. [In Russian]

Litvin, V. V, Samoylov, M. V., Vlasov, S. A., Kagan, Ya. M., & Kudryashov, B. M. (2010). Works developing on polymer flooding at experimental area of Samotlor field stratum AB13. Drilling and Oil, (2), 38–43. [In Russian]

Ogadjanov, V. A. (1997). Geophysics researches based on rock’s dilation [Dr. Sci. (Geol.-Mineral.) abstract of the dissertation, Saratov State University]. [In Russian]

Polischyk, S. E., Dyagilev, V. F., & Leontiev, S. A. (2016). Reasons for polymer flooding on the Novomodezhnoe field. Geology and oil & gas potential of West Siberian megapoll: Proceedings of the 10th International scientific and technical conference: Vol. 2 (pp. 119–123). Industrial University of Tyumen. [In Russian]

Prokopenko, I. A., & Prokopenko, M. N. (2019). Tuning of the model during field development. Main settings for model tuning. Vestnik nauki, 3(6), 406–419. [In Russian]

Stepanov, A. V., Surkov, A. Yu., Basyrov, M. A., & Kundin, A. S. (2013). Uncertainties analysis with the example of adaptation of real field model. Oilfield Engineering, (2), 8–12. [In Russian]

Stepanov, A. V., Zubareva, I. A., & Volgin, E. R. (2022). Hydrodynamic modeling of laboratory experiments related to oil displacement with thermopolymer solution. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 8(2), 77–100. https://doi.org/10.21684/2411-7978-2022-8-2-77-100 [In Russian]

Litvak, M., Christie, M., Johnson, D., Colbert, J., & Sambridge, M. (2005, Jan. 31–Feb. 2). Uncertainty estimation in production predictions constrained by production history and time-lapse seismic in a GOM oil field [Conference paper SPE-93146-MS]. SPE Reservoir Simulation Symposium, The Woodlands, Texas. https://doi.org/10.2118/93146-MS