Algorithm for automatic extraction of tectonic fault planes from the resulting probability cubes of machine learning models

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2024. Vol. 10. № 1 (37)

Title: 
Algorithm for automatic extraction of tectonic fault planes from the resulting probability cubes of machine learning models


For citation: Kanonirov, A. P., & Zakharov, A. A. (2024). Algorithm for automatic extraction of tectonic fault planes from the resulting probability cubes of machine learning models. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 10(1), 138–154. https://doi.org/10.21684/2411-7978-2024-10-1-138-154

About the authors:

Alexander P. Kanonirov, Leading Specialist, Group for the Development of Machine Learning Technologies, Tyumen Petroleum Research Center, Tyumen, Russia
apkanonirov@tnnc.rosneft.ru

Alexander A. Zakharov, Dr. Sci (Tech.), Professor, Secure Smart City Information Technologies Department, University of Tyumen; a.a.zakharov@utmn.ru

Abstract:

Seismic exploration is an integral part of the oil and gas industry when studying the geological structure of deposits. Extracting planes of tectonic disruptions is one of the most challenging tasks in seismic exploration, involving the interpretation of seismic information and lacking universal solutions. This problem underscores the relevance of developing and researching corresponding methods. The article introduces a new algorithm for the automatic extraction of such planes from probability cubes obtained as a result of machine learning model predictions.
The algorithm’s features include: 1) data smoothing to reduce noise, 2) clustering points based on their characteristics, 3) extraction of contour points and determination of plane boundaries. The algorithm was implemented and tested on synthetic and real seismic exploration data. The test results confirmed the high efficiency of the algorithm compared to existing approaches implemented in specialized industry software packages.
The proposed solution allows automating the interpretation process of seismic data, aimed at obtaining information about the shapes and orientations of planes of tectonic disruptions. This, in turn, aids in well drilling planning and determining the strategy for the extraction and development of deposits.

References:

Kislitsyn, A. A., Kuznetsov, S. V., Podnebesnykh, A. A., & Granovsky, A. M. (2019). Using neural networks for predicting the dynamics of water cut of horizontal wells. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 5(4), 160–180. https://doi.org/10.21684/2411-7978-2019-5-4-160-180 [In Russian]

Miftakhov, R. F., Avdeev, P. A., Gogonenkov, G. N., Bazanov, A. K., & Efremov, I. I. (2021). Mapping of faults based on machine learning and neural networks. Russian Oil and Gas Geology, (3), 123–136. https://doi.org/10.31087/0016-7894-2021-3-123-136 [In Russian]

Fonin, A. A., Suchkov, S. G., Nikolayevtsev, V. A., & Mikheyev, S. I. (2023). Mathematical modeling of a new method for processing a seismic signal on the example of a section of the Saratov right bank. Part 1. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(1), 92–106. https://doi.org/10.21684/2411-7978-2023-9-1-92-106 [In Russian]

Babii, A., Ghysels, E., & Pan, J. (2023). Tensor principal component analysis. arXiv. https://doi.org/10.48550/arXiv.2212.12981

Battaglino, S., & Koyuncu, E. (2019). A generalization of principal component analysis. arXiv. https://doi.org/10.48550/arXiv.1910.13511

Dou, Y., Li, K., Zhu, J., Li, X., & Xi, Y. (2022). Attention-based 3-D seismic fault segmentation training by a few 2-D slice labels. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15. https://doi.org/10.1109/TGRS.2021.3113676

Genova, K., Yin, X., Kundu, A., Pantofaru, C., Cole, F., Sud, A., Brewington, B., Shucker, B., & Funkhouser, T. (2021). Learning 3D semantic segmentation with only 2D image supervision. arXiv. https://doi.org/10.48550/arXiv.2110.11325

He, Y., Yu, H., Liu, X., Yang, Z., Sun, W., & Mian, A. (2023). Deep learning based 3D segmentation: A survey. arXiv. https://doi.org/10.48550/arXiv.2103.05423

Kim, M., Yu, J., Kang, N.-K., & Kim, B.-Y. (2021). Improved workflow for fault detection and extraction using seismic attributes and orientation clustering. Applied Sciences, 11(18), Article 8734. https://doi.org/10.3390/app11188734

Li, C., Wei, H., & Chen, H. (2019). LGLG-WPCA: An effective texture-based method for face recognition. arXiv. https://doi.org/10.48550/arXiv.1811.08345

Li, X., Li, K., Xu, Z., Huang, Z., & Dou, Y. (2023). Fault-Seg-Net: A method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Computers and Geotechnics, 158, Article 105412. https://doi.org/10.1016/j.compgeo.2023.105412

Mujakperuo, B. J. O., & Airen, O. J. (2023). Subsurface structural and stratigraphical evaluation of Sapele Shallow field, Niger Delta, Southern Nigeria. Scientia Africana, 22(2), 203–218. https://doi.org/10.4314/sa.v22i2.18

Qi, J., Lyu, B., AlAli, A., Machado, G., Hu, Y., & Marfurt, K. J. (2018). Image processing of seismic attributes for automatic fault extraction. Geophysics, 84(1), O25–O37. https://doi.org/10.1190/geo2018-0369.1

Ren, H., Wen, X., & Tang, C. (2022). Denoising seismic data with drilling noise based on GAN. SEG Global Meeting Abstracts, 126–128. https://doi.org/10.1190/iwmg2021-33.1

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over Union: A metric and a loss for bounding box regression. arXiv. https://doi.org/10.48550/arXiv.1902.09630

Ugwoke, R. E., Ubachukwu, A. A., Urama, J. O., Okike, O., Alhassan, J. A., & Chukwude, A. E. (2023). Principal component analysis of ground level enhancement of cosmic ray events. Research in Astronomy and Astrophysics, 23(3), Article 035017. https://doi.org/10.1088/1674-4527/acba65

Wang, D., Lu, X., & Rinaldo, A. (2019). DBSCAN: Optimal rates for density based clustering. arXiv. https://doi.org/10.48550/arXiv.1706.03113

Wang, L., Zhang, X., Zhao, F., Wu, C., Wang, Y., Song, Z., Yang, L., Li, J., & Liu, H. (2023). Fuzzy-NMS: Improving 3D object detection with fuzzy classification in NMS. arXiv. https://doi.org/10.48550/arXiv.2310.13951

Wei, X., Zhang, C., Wang, H., Tan, C., Xiong, D., Jiang, B., Zhang, J., & Kim, S.-W. (2023). Seismic data interpolation based on denoising diffusion implicit models with resampling. arXiv. https://doi.org/10.48550/arXiv.2307.04226

Zhang, B., & Lou, Y. (2020). Automatic seismic fault surfaces construction using seismic discontinuity attribute. SEG Technical Program Expanded Abstracts, 1101–1105. https://doi.org/10.1190/segam2020-3427011.1