Release:
2024. Vol. 10. № 1 (37)About the authors:
Alexander P. Kanonirov, Leading Specialist, Group for the Development of Machine Learning Technologies, Tyumen Petroleum Research Center, Tyumen, RussiaAbstract:
Seismic exploration is an integral part of the oil and gas industry when studying the geological structure of deposits. Extracting planes of tectonic disruptions is one of the most challenging tasks in seismic exploration, involving the interpretation of seismic information and lacking universal solutions. This problem underscores the relevance of developing and researching corresponding methods. The article introduces a new algorithm for the automatic extraction of such planes from probability cubes obtained as a result of machine learning model predictions.Keywords:
References:
Kislitsyn, A. A., Kuznetsov, S. V., Podnebesnykh, A. A., & Granovsky, A. M. (2019). Using neural networks for predicting the dynamics of water cut of horizontal wells. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 5(4), 160–180. https://doi.org/10.21684/2411-7978-2019-5-4-160-180 [In Russian]
Miftakhov, R. F., Avdeev, P. A., Gogonenkov, G. N., Bazanov, A. K., & Efremov, I. I. (2021). Mapping of faults based on machine learning and neural networks. Russian Oil and Gas Geology, (3), 123–136. https://doi.org/10.31087/0016-7894-2021-3-123-136 [In Russian]
Fonin, A. A., Suchkov, S. G., Nikolayevtsev, V. A., & Mikheyev, S. I. (2023). Mathematical modeling of a new method for processing a seismic signal on the example of a section of the Saratov right bank. Part 1. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(1), 92–106. https://doi.org/10.21684/2411-7978-2023-9-1-92-106 [In Russian]
Babii, A., Ghysels, E., & Pan, J. (2023). Tensor principal component analysis. arXiv. https://doi.org/10.48550/arXiv.2212.12981
Battaglino, S., & Koyuncu, E. (2019). A generalization of principal component analysis. arXiv. https://doi.org/10.48550/arXiv.1910.13511
Dou, Y., Li, K., Zhu, J., Li, X., & Xi, Y. (2022). Attention-based 3-D seismic fault segmentation training by a few 2-D slice labels. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15. https://doi.org/10.1109/TGRS.2021.3113676
Genova, K., Yin, X., Kundu, A., Pantofaru, C., Cole, F., Sud, A., Brewington, B., Shucker, B., & Funkhouser, T. (2021). Learning 3D semantic segmentation with only 2D image supervision. arXiv. https://doi.org/10.48550/arXiv.2110.11325
He, Y., Yu, H., Liu, X., Yang, Z., Sun, W., & Mian, A. (2023). Deep learning based 3D segmentation: A survey. arXiv. https://doi.org/10.48550/arXiv.2103.05423
Kim, M., Yu, J., Kang, N.-K., & Kim, B.-Y. (2021). Improved workflow for fault detection and extraction using seismic attributes and orientation clustering. Applied Sciences, 11(18), Article 8734. https://doi.org/10.3390/app11188734
Li, C., Wei, H., & Chen, H. (2019). LGLG-WPCA: An effective texture-based method for face recognition. arXiv. https://doi.org/10.48550/arXiv.1811.08345
Li, X., Li, K., Xu, Z., Huang, Z., & Dou, Y. (2023). Fault-Seg-Net: A method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Computers and Geotechnics, 158, Article 105412. https://doi.org/10.1016/j.compgeo.2023.105412
Mujakperuo, B. J. O., & Airen, O. J. (2023). Subsurface structural and stratigraphical evaluation of Sapele Shallow field, Niger Delta, Southern Nigeria. Scientia Africana, 22(2), 203–218. https://doi.org/10.4314/sa.v22i2.18
Qi, J., Lyu, B., AlAli, A., Machado, G., Hu, Y., & Marfurt, K. J. (2018). Image processing of seismic attributes for automatic fault extraction. Geophysics, 84(1), O25–O37. https://doi.org/10.1190/geo2018-0369.1
Ren, H., Wen, X., & Tang, C. (2022). Denoising seismic data with drilling noise based on GAN. SEG Global Meeting Abstracts, 126–128. https://doi.org/10.1190/iwmg2021-33.1
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over Union: A metric and a loss for bounding box regression. arXiv. https://doi.org/10.48550/arXiv.1902.09630
Ugwoke, R. E., Ubachukwu, A. A., Urama, J. O., Okike, O., Alhassan, J. A., & Chukwude, A. E. (2023). Principal component analysis of ground level enhancement of cosmic ray events. Research in Astronomy and Astrophysics, 23(3), Article 035017. https://doi.org/10.1088/1674-4527/acba65
Wang, D., Lu, X., & Rinaldo, A. (2019). DBSCAN: Optimal rates for density based clustering. arXiv. https://doi.org/10.48550/arXiv.1706.03113
Wang, L., Zhang, X., Zhao, F., Wu, C., Wang, Y., Song, Z., Yang, L., Li, J., & Liu, H. (2023). Fuzzy-NMS: Improving 3D object detection with fuzzy classification in NMS. arXiv. https://doi.org/10.48550/arXiv.2310.13951
Wei, X., Zhang, C., Wang, H., Tan, C., Xiong, D., Jiang, B., Zhang, J., & Kim, S.-W. (2023). Seismic data interpolation based on denoising diffusion implicit models with resampling. arXiv. https://doi.org/10.48550/arXiv.2307.04226
Zhang, B., & Lou, Y. (2020). Automatic seismic fault surfaces construction using seismic discontinuity attribute. SEG Technical Program Expanded Abstracts, 1101–1105. https://doi.org/10.1190/segam2020-3427011.1