New approaches to simplification of integrated asset models

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 4 (36)

Title: 
New approaches to simplification of integrated asset models


For citation: Padin, E. A., & Yushkov, A. Yu. (2023). New approaches to simplification of integrated asset models. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(4), 108–127. https://doi.org/10.21684/2411-7978-2023-9-4-108-127

About the authors:

Egor A. Padin, Postgraduate of the Department of Algebra and Mathematical Logic Tyumen State University
Anton Y. Yushkov, Cand. Sci. (Tech.), Associate Professor, Department of Development and Operation of Oil and Gas Fields, Tyumen Industrial University; General Manager, Tyumen Petroleum Research Center; ayyushkov@tnnc.rosneft.ru; ORCID: 0000-0002-6160-0689

Abstract:

The current trend in modeling of the development of oil and gas fields is the transition from models of individual elements of the production system to complex integrated asset models (IAM) of hydrocarbon production fields. The use of such models is especially relevant for the correct forecasting and management of hydrocarbon production in gas, gas condensate and oil and gas condensate fields, where the parameters of facility infrastructure determine the dynamics of production no less than wells and productive reservoirs. The complexity of integrated asset models is associated with the labor-intensive of its creation and the high requirements for computational and time resources required to create and maintain models. This article proposes approaches to increase the efficiency of calculations of integrated asset models while maintaining the quality of forecasting, which helps to increase the value of modeling and the degree of details of development of project solutions. A study of four integrated asset models configurations was carried out. Firstly, the operating features of a detailed integrated asset model are presented, and then methods for simplifying both the reservoir model and the gathering system model are described. For each model, key characteristics are given, as well as calculation algorithms. Through the example of a gas field, a numerical experiment was performed using all the considered configurations; a comparison of the main technological parameters of development was carried out, which showed similar results for all configurations. Based on the study, a conclusion was made about the possibility of using such simplified integrated asset models to perform operational, including multivariate calculations in addition to detailed integrated asset models.

References:

Arkhipov, Yu. A., Rusanov, A. S., Orekhov, E. N., Sadykov, T. I., Merkushin, P. V., Kadnikov, A. V., Smirnov, E. I., Strekalov, A. V., & Knyazev, S. M. (2022). Operational forecasting of gas field development based on integrated proxy modeling. Oil Industry, (1), 74–76. https://doi.org/10.24887/0028-2448-2022-1-74-76 [In Russian]

Batalov, D. A., Yusupov, R. Yu., Zykov, M. A., Zipir, V. G., Gontarev, D. P., Kukushkin, V., Bayguzov, R., Kraynova, E., Krivokorytova, M., & Kharkovsky, A. (2018, October 31–November 2). Integrated asset modeling in West Siberia: A case study [Conference paper SPE-192578-MS]. SPE Annual Caspian Technical Conference and Exhibition, Astana, Kazakhstan. https://doi.org/10.2118/192578-MS

Bakhty, N., Demin, A., & Tupitsin, M. (2020, October 26–29). Assisted creation and usage of material balance models for production forecasting as a part of integrated field management [Conference paper SPE-201958-MS]. SPE Russian Petroleum Technology Conference, Virtual. https://doi.org/10.2118/201958-MS

Bikbulatov, S. M., Vorobyev, D. S., Smirnov, A. Yu., Mukminiov, I. R., & Romashkin, S. V. (2015, October 26–28). Improvement of the well performance optimization methodology based on integrated modeling [Conference paper SPE-176581-MS]. SPE Russian Petroleum Technology Conference, Moscow, Russia. https://doi.org/10.2118/176581-MS

Voznyuk, A., Gataullin, T., & Poushev, A. (2018, October 15–17). Evolution of integrated models from simplified approach to complex reservoir — well — surface network representation at different stages of gas condensate field lifecycle [Conference paper SPE-191744-18RPTC-MS]. SPE Russian Petroleum Technology Conference, Moscow, Russia. https://doi.org/10.2118/191744-18RPTC-MS

Ignatyev, A., Bikbulatov, S., Mukminov, I., Romashkin, S., Buchinskiy, S., & Vikulova, E. (2013, October 15–17). The features of building the integrated model for development of two gas-condensate formations of Urengoyskoe field [Conference paper SPE-166892-MS]. SPE Arctic and Extreme Environments Technical Conference and Exhibition, Moscow, Russia. https://doi.org/10.2118/166892-MS

Karmazin, M. S., Yushkov, A. Yu., & Buchinskiy, S. V. (2015). Gas production optimization for two fields based on integrated model. Scientific and Technical Bulletin of OJSC “NK “Rosneft”, (3), 50–52. [In Russian]

Kostyuchenko, S. V., Kudryashov, S. V., & Vorobiev, P. V. (2003). Integrated models to design coordinated oil production and gathering systems (part 1). Oil Industry, (11), 100–103. [In Russian]

Kuzevanov, M. A., Glumov, D. N., & Buchinskiy, S. V. (2016). Integrated model of a system reservoir — well — gathering system — processing facility of a multilayer oil and gas condensate field. Scientific and Technical Bulletin of OJSC “NK “Rosneft”, (42), 25–27. [In Russian]

Skvortsov, D. O., & Glumov, D. N. (2014, October 14–16). Condensate production optimization using MEPO software combined with Eclipse-Network [Conference paper SPE-171261-MS]. SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition, Moscow, Russia. https://doi.org/10.2118/171261-MS

Stepanchuk, A., & Amangaliyev, B. (2018, October 31–November 2). Application of integrated reservoir to surface network coupling of giant oil field, Kazakhstan [Conference paper SPE-192537-MS]. SPE Annual Caspian Technical Conference and Exhibition, Astana, Kazakhstan. https://doi.org/10.2118/192537-MS

Kharitonov, A. N., Arkhipov, Yu. A., Davletov, K. M., Skorobogach, M. A., Yumshanov, V. N., Dunaev, A. V., & Glazunov, V. Yu. (2010). Results of the implementation of the integrated model of Yamsoveyskoye oil and gas condensate field (Cenomanian). Geology, Drilling, Development and Operation of Gas and Gas Condensate Fields, (1), 38–52. [In Russian]

Yazkov, A. V., & Kudrin, P. A. (2016). Integrated approach to NOVATEK reservoir development at different realization stages. Gas Industry, (12), 30–42. [In Russian]

Datta-Gupta, A., & King, M. J. (2007). Streamline simulation: Theory and practice. Society of Petroleum Engineers.

He, Q., Mohaghegh, Sh. D., & Liu, Zh. (2016, September 13–15). Reservoir simulation using Smart Proxy in SACROC Unit — Case study [Conference paper SPE-184069-MS]. SPE Eastern Regional Meeting, Canton, Ohio, USA. https://doi.org/10.2118/184069-MS

Kritsadativud, P., Jafarpour, B., & Ekkawong, P. (2015, April 27–30). Fast production optimization with decline curve analysis under facility constraints: A field case study [Conference paper SPE-174039-MS]. SPE Western Regional Meeting, Garden Grove, California, USA. https://doi.org/10.2118/174039-MS

Li, H., & Durlofsky, L. J. (2016). Upscaling for compositional reservoir simulation. SPE Journal, 21(3), 873–887. https://doi.org/10.2118/173212-PA

Nnamdi, D. (2020, August 11–13). Conceptual reservoir development and short-term forecasting using material balance based integrated asset models and neural network proxy models [Confe­rence paper SPE-203682-MS]. SPE Nigeria Annual International Conference and Exhibition, Virtual. https://doi.org/10.2118/203682-MS

Xie, J., Yang, Ch., Gupta, N., King, M. J., & Datta-Gupta, A. (2015). Depth of investigation and depletion in unconventional reservoirs with fast-marching methods. SPE Journal, 20(4), 831–841. https://doi.org/10.2118/154532-PA

Yang, Ch., He, J., Onishi, T., Du, S., Wang, Zh., Guan, X., Chen, J., & Wen, X.-h. (2022). A phy­sics-based proxy for surface and subsurface coupled simulation models. SPE Journal, 27(4), 1962–1972. https://doi.org/10.2118/204004-PA