Calculated and model profile of reservoir temperature during in-formation oxidation on the example of an oil field

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 4 (36)

Title: 
Calculated and model profile of reservoir temperature during in-formation oxidation on the example of an oil field


For citation: Wolf, A. A., Grachev, S. I., Kolev, Zh. M., Mulyavin, S. F., Steshenko, I. G., & Bazhenova, O. A. (2023). Calculated and model profile of reservoir temperature during in-formation oxidation on the example of an oil field. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(4), 91–107. https://doi.org/10.21684/2411-7978-2023-9-4-91-107

About the authors:

Albert A. Wolf, Cand. Sci. (Tech.), Associate Professor, Department of Development and Ope­ration of Oil and Gas Fields, Institute of Geology and Oil and Gas Production, Industrial University of Tyumen, Tyumen, Russia volfaa@tyuiu.ru
Sergei I. Grachev, Dr. Sci. (Tech.), Professor, Tyumen Industrial University; grachevsi@mail.ru

Zheka M. Kolev, Cand. Sci. (Tech.), Associate Professor, Department of Development and Ope­ration of Oil and Gas Fields, Institute of Geology and Oil and Gas Production, Industrial University of Tyumen, Tyumen, Russia kolevzm@tyuiu.ru
Semyon F. Mulyavin, Dr. Sci. (Tech.), Professor, Department of Development and Operation of Oil and Gas Fields, Institute of Geology and Oil and Gas Production, Industrial University of Tyumen, Tyumen, Russia; muljavinsf@tyuiu.ru, https://orcid.org/0000-0003-4768-8511

Irina G. Steshenko, Engineer, Department of Development and Operation of Oil and Gas Fields, Institute of Geology and Oil and Gas Production, Industrial University of Tyumen, Tyumen, Russia; steshenkoig@tyuiu.ru

Olga A. Bazhenova, Laboratory Assistant, Department of Development and Operation of Oil and Gas Fields, Institute of Geology and Oil and Gas Production, Industrial University of Tyumen, Tyumen, Russia; bazhenovaoa@tyuiu.ru

Abstract:

The article describes physical and mathematical models of reservoir oxidation in oil deposits, the development of which is impossible with known technologies. In-formation oxidation is realized in the form of oil oxidation. A laboratory experiment on the core for the formation of combustion is presented, and the problems arising during the initiation of combustion in the rocks of the Bazhenov formation are described. It was revealed that the temperature gradient at the front and the rate of movement of the oxidation front are influenced by the volume of injected oxygen and the amount of kerogen per unit volume of the formation. The well-known Thomas model has been adapted for the analytical solution of the radial problem of in-situ combustion to the conditions of the implementation of oxidation processes in bituminous formations. The results of analytical calculations of the dynamics of changes in the formation temperature profile depending on the content of coking material and the flow rate of the injected air are presented. It was found that the temperature gradient at the front reaches 1,573 K/m, and that the rate of oxidation movement is influenced by the volume of oxygen and the density of kerogen reserves in the formation. Recommendations are made for further study of the advance of the front of intra-layer combustion in order to clarify the dependencies of the influence of other parameters (permeability, water saturation, etc.) on the speed of the front advance.

References:

Amelin, I. D. (1980). In-situ combustion. Nedra. [In Russian]

Antoniadi, D. G. (1995). Scientific basis for developing oil fields using thermal methods. Nedra. [In Russian]

Arzhanov, F. G., Antoniadi, D. G., Garushev, A. R., Ishkhanov, V. G., & Bekuh, I. I. (1995). Thermal methods of influencing oil reservoirs. Nedra. [In Russian]

Afanaskin, I. V. (2013). Increasing the technological efficiency of the method of directed air injection into oil reservoirs based on numerical modeling and the results of hydrodynamic studies of wells. [Cand. Sci. (Tech.) abstract of the dissertation, VNIIneft]. [In Russian]

Baibakov, N. K., & Garushev, A. R. (1988). Thermal methods for developing oil fields (3rd ed.). Nedra. [In Russian]

Baibakov, N. K., Garushev, A. R., Antoniadi, D. G., & Shikhanov, V. G. (1995). Thermal methods of oil production in Russia and abroad. VNIIOENG. [In Russian]

Barkov, S. L., Vorobiev, M. A., & Sonich, V. P. (1997). Conditions and criteria for the implementation of wet in-situ combustion. VNIIOENG. [In Russian]

Baturin, Yu. E., Sonich, V. P., Malyshev, A. G., & Zaripov, O. G. (2002). Assessment of the prospects for using the hydrothermal stimulation method in the Yu0 formation of the fields of OJSC “Surgutneftegas”. Interval. Peredovye neftegazovye tekhnologii, (1). [In Russian]

Baturin, Yu. E., Bahtij, N., Volf, A. A. et al. (2018). Technological scheme of pilot work to test the effectiveness of hydrothermal stimulation on the АС1 *** formation of the field. Tyumen Branch of SurgutNIPIneft. [In Russian]

Betelin, V. B., Yudin, V. A., Afanaskin, I. V., Volpin, S. G., Kats, R. M., & Korolev, A. V. (2015). The creation of a domestic thermal hydraulic simulator is a necessary stage in the development of unconventional hydrocarbon deposits in Russia. Scientific Research Institute for System Analysis of the Russian Academy of Sciences. [In Russian]

Bokserman, A. A., Zheltov, Yu. P., & Zhdanov, S. A. (1974). In-situ combustion with waterflooding in oil field development. Nedra. [In Russian]

Burger, J., Sourieau, P., & Combarnous, M. (1984). Récupération assistée du pétrole: les méthodes thermiques (Vol. 25). Editions Technip. [In French]

Volf, A. A., & Petrov, A. A. (2006). Features of initiating the process of in-situ combustion in low-permeability kerogen-containing rocks. Oil Industry, (4), 56–58. [In Russian]

Kislitsin, A. A. (2002). Fundamentals of thermophysics. University of Tyumen. [In Russian]

Mulyavin, S. F., Grachev, S. I., Kolev, Zh. M., Volf, A. A., & Baturin, Yu. E. (2022). Determination of the formation temperature profile during in-situ combustion using the example of formation АС1 of an oil field. In Solving applied problems of oil and gas production based on the classical works of A. P. Telkov and A. N. Laperdin (pp. 147–158). [In Russian]

Hafizov, R. I. (2018). Study of the processes of development of super-viscous oil deposits using thermal methods of influence under conditions of gas influence based on thermohydrodynamic modeling [Cand. Sci. (Tech.) dissertation, TatNIPIneft]. [In Russian]

Chekhonin, E., Parshin, A., Pisarenko, D., Popov, Yu., Romushkevich, R., Safonov, S., & Spasennyh, M. (2012). Thermophysical properties of reservoir rocks. Neftegazovoe obozrenie, 24(3), 1–22. [In Russian]

Shchekoldin, K. A. (2016). Justification of technological regimes of thermal gas impact on deposits of the Bazhenov formation [Cand. Sci. (Tech.) dissertation, Gubkin University]. [In Russian]

Bailey, H. R., & Larkin, B. K. (1959). Heat conduction in underground combustion. Transactions of the AIME, 216, 123–129.

Bailey, H. R., & Larkin, B. K. (1960). Conduction-convection in underground combustion. Transactions of the AIME, 219(1), 320–331. https://doi.org/10.2118/1482-G

Chu, Ch. (1963). Two-dimensional analysis of a radial heat wave. Journal of Petroleum Technology, 15(10), 1137–1144. https://doi.org/10.2118/560-PA

Ramey, H. J. (1959). Transient heat conduction during radial movement of a cylindrical heat source — Applications to the thermal recovery process. Transactions of the AIME, 216(1), 115–122. https://doi.org/10.2118/1133-G

Thomas, G. W. (1963). A study of forward combustion in a radial system bounded by permeable media. Journal of Petroleum Technology, 15(10), 1145–1149. https://doi.org/10.2118/681-PA