Development of the concept of a multiphase flowmeter

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 4 (36)

Title: 
Development of the concept of a multiphase flowmeter


For citation: Puritskis, J. V., & Vershinin, V. E. (2023). Development of the concept of a multi­phase flowmeter. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(4), 76–90. https://doi.org/10.21684/2411-7978-2023-9-4-76-90

About the authors:

Janis V. Puritskis, Specialist, Tyumen Petroleum Research Center, Tyumen, Russia; Master Student, Institute of Physics and Technology, University of Tyumen, Tyumen, Russia yvpuritskis@tnnc.rosneft.ru
Vladimir E. Vershinin, Chief Specialist, Tyumen Petroleum Research Center, Tyumen, Russia; Associate Professor, Department of Physical Processes and Systems Modeling, School of Natural Sciences, University of Tyumen, Tyumen, Russia; ve_vershinin2@tnnc.rosneft.ru

Abstract:

In a number of industries: oil and gas, chemical and nuclear industries, the task of controlling multiphase flow regimes arises. In the nuclear and chemical industries, the flow regime directly affects the nature of technological processes and their safety. In the oil and gas industry, the products extracted from wells are usually a mixture of oil, water and gas, and the task of monitoring the flow regime is related to compliance with the permissible parameters of pumping and control equipment. When using multiphase flowmeters of the flow type, the algorithms for calculating phase flow rates in a multiphase flow are very sensitive to a violation of the uniformity and homogeneity of the measured flow. Excessive noise of the signal of pressure sensors, volume content and flow caused by projectile, cork or stratified modes can negatively affect the accuracy of measurements. As a rule, flow mode maps are used when determining the current mode. This approach is based on the calculation of a number of dimensionless flow parameters (Froude number, Lockhart–Martinelli parameter, etc.). In the case of a dynamically changing flow, this approach may not be suitable. For a more accurate and reliable determination of flow modes, it is proposed to use a direct method of analyzing the spatial distribution of phases in the flow and recognizing the type of flow using artificial convolutional neural networks. This approach allows you to get rid of classification errors and get more accurate information about the flow. The aim of the study is to develop a technique for neural network analysis of images of a multiphase flow with subsequent determination of its type. In the course of the work, approaches to the formation of a training sample are considered, the search for the optimal structure of the neural network is carried out and an accuracy assessment is given for the classification of multiphase flow modes by a convolutional neural network. The study was carried out on two types of data: 1) synthetic images obtained using numerical simulation of multiphase flows, and 2) experimentally obtained flow images on a multiphase flow stand.

References:

Biryukov, B. V., Danilov, M. A., & Kivilis, S. S. (1987). Testing of flowmeters. Standards Publishing House. [In Russian]

Galushkin, A. I., & Tsypkin, Ya. Z. (2015). Neural networks: The history of theory development. Alyans. [In Russian]

Ganopolskij, R. M., Gilmanov, A. Ya., & Malygin, G. A. (2020). Hydrodynamic modeling of flows of complex shape. University of Tyumen Publishing House. [In Russian]

Gritsenko, A. I., Klapchuk, O. V., & Kharchenko, Yu. A. (1994). Hydrodynamics of gas-liquid mixtures in wells and pipelines. Nedra. [In Russian]

Zvonarev, S. V. (2019). Fundamentals of mathematical modeling. Ural University Publishing House. [In Russian]

Mamaev, V. A., Odishariya, G. E., Klapchuk, O. V., Tochigin, A. A., & Semenov, N. I. (1978). Movement of gas-liquid mixtures in pipes. Nedra. [In Russian]

Plotnikova, I. N. (2012). Elemental composition of oil and dispersed organic matter and methods of its study. Kazan University. [In Russian]

Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1977). The properties of gases and liquids (3rd ed.). McGraw-Hill.

Wallis, G. (1972). One-dimensional two-phase flows. Mir. [In Russian]

Haykin, S. (2019). Neural networks. Dialektika. [In Russian]

Tsejtlin, V. G. (1977). Flow measuring equipment. Standards Publishing House. [In Russian]

Chisholm, D. (1983). Two-phase flow in pipe lines and heat exchanges. Pitman Press.

Shiryaev, V. I. (2016). Financial markets. Neural networks, chaos and nonlinear dynamics. Librokom. [In Russian]

NEXT foam. (2017). Boundary Conditions — OpenFOAM-4.1.

Brill, J. P., & Mukherjee, H. (1999). Multiphase flow in wells. Society of Petroleum Engineers.

Darwich, T. D., Toral, H., & Archer, J. S. (1991). A software technique for flow-rate measurement in horizontal two-phase flow. SPE Production Engineering, 6(3), 265–270. https://doi.org/10.2118/19510-PA

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

American Petroleum Institute. (2004). State of the art multiphase flow metering. API publication 2566.

Taitel, Ye., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22(1), 47–55. https://doi.org/10.1002/aic.690220105