Linear filtration waves in a layered heterogeneous formation

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 4 (36)

Title: 
Linear filtration waves in a layered heterogeneous formation


For citation: Filippov, A. I., Akhmetova, O. V., & Zelenova, M. A. (2023). Linear filtration waves in a layered heterogeneous formation. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(4), 59–75. https://doi.org/10.21684/2411-7978-2023-9-4-59-75

About the authors:

Aleksandr I. Filippov, Dr. Sci. (Tech.), Professor, Chief Researcher, Sterlitamak Branch of Ufa University of Science and Technology, Sterlitamak, Russia; filippovai1949@mail.ru, https://orcid.org/0000-0002-0964-9805

Oksana V. Akhmetova, Dr. Sci. (Phys.-Math.), Professor, Department of General and Theoretical Physics, Sterlitamak branch of the Bashkir State University; eLibrary AuthorID, ahoksana@yandex.ru

Marina A. Zelenova, Cand. Sci. (Phys.-Math.), Associate Professor, Department of General and Theoretical Physics, Sterlitamak Branch of Bashkir State University; marina_ag@inbox.ru

Abstract:

Solutions to the problem of a filtration-wave pressure field in a layered inhomogeneous medium with a pressure pulse specified on the left boundary are obtained. The problem statement contains a two-dimensional wave equation in the central layer, a wave equation that takes into account the predominance of vertical motion in the environment, symmetry conditions in the center of the formation, equality of pressures and flows at the interfaces, the absence of disturbances of the filtration wave field at the initial moment of time and at an infinite distance from the source of disturbance. The article found an exact solution to the problem obtained using the Laplace–Carson and the Fourier transform of sine, an asymptotic solution and an exact solution for the special case of a homogeneous medium. It is shown that when the formal parameter tends to zero, the exact solution coincides with the main asymptotic approximation. The tendency of the thickness of the central layer to infinity reduces the solution for a layered inhomogeneous medium to an expression describing the pressure fields in a homogeneous medium. Spatiotemporal dependencies describing the dynamics of the pressure pulse in layered inhomogeneous and homogeneous media were constructed, and the general properties and features of linear filtration waves in layered inhomogeneous and homogeneous layers were studied.

References:

Alfayyadh, A. G. H., & Valiev, D. Z. (2021). Analysis of methods of wave action on the bottom hole formation zone. Digital Science, (3), 110–122. [In Russian]

Bazhaluk, Ya. M., Karpash, O. M., Klymyshyn, Ya. D., Gutak, A. I., & Hudin, N. V. (2012). Oil production increase due to formation stimulation with the help of mechanical oscillations train. Oil and Gas Business, (3), 185–198. [In Russian]

Volniczkaya, E. P. (2005). Increasing fluid recovery using pulse-wave technology of low-frequency stimulation of the reservoir. Oil and Gas Technologies, 1(36), 66–67. [In Russian]

Gataullin, R. N., & Kadyirov, A. I. (2020). Intensifying oil extraction by wave action methods on productive layers. SOCAR Proceedings, (2), 78–90. https://doi.org/10.5510/OGP20200200434
[In Russian]

Grachev, S. I., & Strekalov, A. V. (2016). Simulation of wave processes in fracture-porous collectors. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 2(1), 52–62. https://doi.org/10.21684/2411-7978-2016-2-1-52-62 [In Russian]

Karmazenko, V. V., Stelmakh, V. G., Kunevich, V. N., Verba, Yu. V., & Zazulyak, О. M. (2005). Anent enhancement of bottomhole zone stimulation technique efficiency. Karotazhnik, 3–4(130–131), 166–170. [In Russian]

Kononenko, P. I., Skachedub, A. A., Yakimov, A. S., Matsygorov, A. A., Slidenko, V. M., & Listovschik, L. K. (2012). Technogenic reasons of BH clogging and possible way to eliminate it. Neft. Gaz. Novacii, (7), 44–51. [In Russian]

Korzhenevsky, A. A., Korzhenevsky, A. G., & Korzhenevskaya, T. A. (2021). Pulse-wave technologies of net formations fracturing — The tangible ground to put the wells on a potential productivity. Oilfield Engineering, (3), 13–18. https://doi.org/10.33285/0207-2351-2021-3(627)-13-18 [In Russian]

Kuznetsova, E. I. (2012). Fluid filtration through two zones fractured porous formation. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, (4), 80–86. [In Russian]

Mingulov, Sh. G. (2014). Technology of fluid pulse recovery of injection wells injectivity. Oilfield Engineering, (1), 39–42. [In Russian]

Ovchinnikov, M. N. (2021). Subtle issues of interpreting the results of the filtration pressure wave method. Institute of Computer Research. [In Russian]

Tatosov, A. V., & Varavva, A. I. (2016). Cleaning the bottom-hole zone of wells. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 2(3), 85–93. https://doi.org/10.21684/2411-7978-2016-2-3-85-93 [In Russian]

Filippov, A. I., & Akhmetova, O. V. (2015). Presenting filtration-wave fields in a layered anisotropic medium as a plane wave (part I). Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 1(1), 65–76. [In Russian]

Filippov, A. I., Akhmetova, O. V., & Kovalskii, A. A. (2018). Low-frequency deceleration of a filtration wave in layered-inhomogeneous permeable formations. Journal of Applied Mechanics and Technical Physics, 59(3), 474–481. https://doi.org/10.1134/S0021894418030112

Filippov, A. I., Akhmetova, O. V., Kovalsky, A. A., & Gubaidullin, M. R. (2019). Pressure field for a given selection in a layered heterogeneous anisotropic oil reservoir. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 5(1), 187–200. https://doi.org/10.21684/2411-7978-2019-5-1-187-200 [In Russian]

Filippov, A. I., & Akhmetova, O. V. (2022). Filtration waves. Journal of Engineering Physics and Thermophysics, 95(4), 905–911. [In Russian]

Filippov, A. I., Zelenova, M. A., & Akhmetova, O. V. (2022). Evaluation of characteristic wave parameters for optimization of thermogasodynamic effects on the boreholeformation system. Ecological Systems and Devices, (11), 36–42. [In Russian]

Filippov, A. I., Akhmetova, O. V., Zelenova, M. A., Kovalsky, A. A., Kabirov, I. F., Levina, T. M., Valitov, R. R., & Yusupov, I. T. (2023). Experimental research of filtration waves. Izvestiya vuzov. Fizika, 66(10), 79–88. https://doi.org/0.17223/00213411/66/10/9 [In Russian]

Chernyh, V. A. (2008). New mathematical model of oil filtration in a heterogeneous reservoir. Automation and Informatization of the Fuel and Energy Complex, (2), 26–30. [In Russian]

Shipulin, A. V. (2013). Application of pulse and wave procedure to develop the pools with viscous oil. Neft. Gaz. Novacii, (4), 59–62. [In Russian]

Shulev, Yu. V., Beketov, S. B., & Dimitriadi, Yu. K. (2006). Technology of wave impact on the productive formation in order to intensify the influx of hydrocarbons. Mining Informational and Analytical Bulletin, (6), 388–394. [In Russian]

Iseger, P. (2006). Numerical transform inversion using Gaussian quadrature. Probability in the Engineering and Informational Sciences, 20, 1–44.

Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM, 13(1), 47–49. https://doi.org/10.1145/361953.361969