Release:
2023. Vol. 9. № 4 (36)About the authors:
Ramil F. Sharafutdinov, Dr. Sci. (Phys.-Math.), Professor of the Department of Geophysics, Ufa University of Science and Technology, Ufa, Russia gframil@inbox.ruAbstract:
Based on modeling of non-isothermal filtration of a multiphase fluid, taking into account thermohydrodynamic effects and heat of condensation, the formation of a temperature field in a homogeneous porous medium at different pressures at the onset of condensation is studied. A numerical model of one-dimensional two-phase filtration taking into account the phase transition is obtained. Testing of the numerical solution was carried out on the basis of a well-known analytical solution for non-isothermal two-phase filtration in a reservoir taking into account mass transfer. The change in gas flow rate during condensate precipitation and the change in temperature over time on the well wall are considered. It is shown that, depending on the pressure of the onset of condensation (the radius of the onset of condensation in the formation), a different rate of formation of the temperature field in the formation is observed after the well is put into operation: the temperature anomaly can be positive, negative or inverse. The results of numerical experiments can be used when planning field studies in gas condensate wells.Keywords:
References:
Valiullin, R. A., & Ramazanov, A. Sh. (1992). Thermal research during compressor development of wells. Bashkir State University Publishing House. [In Russian]
Valiullin, R. A., Ramazanov, A. Sh., & Sharafutdinov, R. F. (1994). Barothermic effect in three-phase filtration with phase transitions. Izvestiya RAN. Mekhanika zhidkosti i gaza, (6), 113–117. [In Russian]
Valiullin, R. A., Ramazanov, A. Sh., & Sharafutdinov, R. F. (1995). Thermometry of multiphase flows. Bashkir State University Publishing House. [In Russian]
Valiullin, R. A., Sharafutdinov, R. F., Sadretdinov, A. A., & Bochkov, A. S. (2008). Radial angular temperature distributions for nonisothermal two-phase filtration of oil and water. Journal of Applied Mechanics and Technical Physics, 49(6), 992–997. https://doi.org/10.1007/s10808-008-0123-2
Vulfson, A. N., Skibitskaya, N. A., & Borodin, O. O. (2011). Sorption of methane rocks of gas deposits in the Henry region. Vestnik Otdelenia nauk o Zemle RAN, 3, Article NZ6019. https://doi.org/10.2205/2011NZ000149 [In Russian]
Gasumov, R. A., & Safoshkin, K. N. (2017). Study of condensation process during well operation under abnormally high reservoir temperatures (by example of the Yubileinoye gas-condensate field). Oil and Gas Studies, (3), 47–51. https://doi.org/10.31660/0445-0108-2017-3-47-51 [In Russian]
Gimatudinov, Sh. K. (1971). Physics of an oil and gas reservoir. Nedra. [In Russian]
Kovalev, A. L., & Sheberstov, Ye. V. (2018). Numerical simulation of non-equilibrium local filtration in gas-condensate beds. Vesti gazovoy nauki, (5), 164–171. [In Russian]
Ramazanov, A. S., & Parshin, A. V. (2012). Analytical model of temperature variations during
the filtration of gas-cut oil. High Temperature, 50(4), 567–569. https://doi.org/10.1134/S0018151X12040189
Chekalyuk, E. B. (1965). Thermodynamics of an oil reservoir. Nedra. [In Russian]
Ahmadi, M. A., Ebadi, M., Marghmaleki, P. S., & Fouladi, M. M. (2014). Evolving predictive model to determine condensate-to-gas ratio in retrograded condensate gas reservoirs. Fuel, 124, 241–257. https://doi.org/10.1016/j.fuel.2014.01.073
Brezis, H. (1983). Analyse fonctionnelle: théorie et applications. Masson. [In French]
Darrigol, O. (2005). Worlds of flow: A history of hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.
Dhombres, J. G., & Robert, J.-B. (1998). Joseph Fourier, 1768-1830: créateur de la physique-
mathématique. Belin. [In French]
Edmister, W. C., & Lee, B. I. (1984). Applied hydrocarbon thermodynamics. Vol. 1 (2nd ed.). Gulf Professional Publishing.
El Aily, M., Khalil, M. H. M., Desouky, S. M., Batanoni, M. H., & Mahmoud, M. R. M. (2013). Experimental studies on constant mass-volume depletion of gas-condensate systems. Egyptian Journal of Petroleum, 22(1), 129–136. https://doi.org/10.1016/j.ejpe.2012.06.003
Fourier, J. B. J. (2009). Théorie analytique de la chaleur. Cambridge University Press. https://doi.org/10.1017/CBO9780511693229 (Original work published 1822) [In French]
Hassan, A. M., Mahmoud, M. A., Al-Majed, A. A., Al-Shehri, D., Al-Nakhli, A. R., & Bataweel, M. A.
(2019). Gas production from gas condensate reservoirs using sustainable environmentally friendly chemicals. Sustainability, 11(10), Article 2838. https://doi.org/10.3390/su11102838
Liu, H., Sun, C.-Y., Yan, K.-L., Ma, Q.-L., Wang, J., Chen, G.-J., Xiao, X.-J., Wang, H.-Y., Zheng, X.-T., & Li, S. (2013). Phase behavior and compressibility factor of two China gas condensate samples at pressures up to 95 MPa. Fluid Phase Equilibria, 337, 363–369. https://doi.org/10.1016/j.fluid.2012.10.011
Roussennac, B. (2001). Gas condensate well test analysis [Master’s report, Stanford University].
Skiba, A. K. (2022). Construction of a gas condensate field development model. Open Computer Science, 12(1), 103–111. https://doi.org/10.1515/comp-2020-0226