Gas purification technology from oxygen

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 2 (34)

Title: 
Gas purification technology from oxygen


For citation: Toropov, E. S., Pisarev, M. O., & Shariddinov, Kh. Sh. (2023). Gas purification technology from oxygen. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(2), 153–163. https://doi.org/10.21684/2411-7978-2023-9-2-153-163

About the authors:

Evgeniy S. Toropov, Cand. Sci. (Tech.), Advanced Engineering School, University of Tyumen, Tyumen, Russia; e.s.toropov@utmn.ru
Mikhail O. Pisarev, Director, Advanced Engineering School, University of Tyumen, Tyumen, Russia; m.o.pisarev@utmn.ru
Khakim Sh. Shariddinov, Master Student, Advanced Engineering School, University of Tyumen, Tyumen, Russia; shariddinov_x@mail.ru

Abstract:

The relevance of this research lies in the need of reproducing and expanding the technological scheme based on the gas field, located in the Orenburg Region. The technology for extracting oxygen from natural gas is not only underdeveloped — the market opportunities are perceived as limited, including the limitations of gas purification equipment (thus, the need for import). Therefore, the industry faces a new challenge — to develop expertise and competence in this area, which will further increase the economic part of the project. Objective: to implement the technology of APG (associated petroleum gas) purification from oxygen for its further supply to the main gas pipeline of Gazprom PJSC. The problem of purifying APG from high oxygen content is considered, showing the advantages and disadvantages of existing schemes, which is of high interest for practical application in field conditions. New environmentally friendly and cost-effective technologies for better treatment of the oxygen content of the APG in the field conditions are presented. The chosen technology excludes formation of toxic by-products and does not require construction of an expensive plant.

References:

Burenina, I. V., & Mukhametyanova, G. Z. (2015). Russian gas utilization: Problems and prospects. Oil and Gas Business, (3), 524–542. [In Russian]

Galiullina, L. I. (2013). Problems and prospects of integrated and efficient use of associated petroleum gas in Russia. Vestnik Kazanskogo tekhnologicheskogo universiteta, 16(22), 346–348. [In Russian]

Golubeva, I. A., Zhagfarov, F. G., & Lapidus, A. L. (2004). Gas chemistry. Vol. 1. Primary processing of hydrocarbon gases. Gubkin University. [In Russian]

Gotttsman C. F., & Prasad, R. (2002). Method of removal of oxygen from flow of gaseous raw material (variants) (R.F. Patent No. 2179060). Praxair Technology. [In Russian]

Dytnersky, Yu. I. (1995). Processes and devices of chemical technology (Vol. 2). Khimiya. [In Russian]

Lalaev, K. E. (2015). Intensification of production and transportation of hydrocarbon raw materials in the northern regions of Western Siberia [Candidate of Technical Sciences dissertation, Ufa State Oil Technical University]. [In Russian]

Nikolaev, N. N. (1980). Diffusion in membranes. Khimiya. [In Russian]

Salikov, A. R. (2020). Technological losses of natural gas during transportation via gas pipelines. Infra-Inzheneriya. [In Russian]

STO Gazprom 089-2010. (2011). Combustible natural gas supplied and transported through main gas pipelines. Specifications. Gazprom. Retrieved June 26, 2023, from https://ugs.gazprom.ru/d/story/1b/283/sto-gazprom-089-2010.pdf [In Russian]

Tamm, M. E., & Tretyakov, Yu. D. (2004). Inorganic chemistry. Vol. 1. Physico-chemical foundations of inorganic chemistry. Akademia. [In Russian]

Traven, V. F. (2018). Organic chemistry: in 3 vols. (Vol. 2). BINOM. Laboratoriya znanij. [In Russian]

Chemistry and chemical technology. (n.d.). Chemist’s textbook 21. Retrieved June 26, 2023, from https://www.chem21.info/info/158215/ [In Russian]

Shumyatsky, Yu. I. (2009). Industrial adsorption processes. KolosS. [In Russian]

Alentiev, A. Yu., Shantarovich, V. P., Merkel, T. C., Bondar, V. I., Freeman, B. D., & Yampolskii, Yu. P. (2002). Gas and vapor sorption, permeation, and diffusion in glassy amorphous teflon AF1600. Macromolecules, 35(25), 9513–9522. https://doi.org/10.1021/ma020494f

Carnell, P. J. H., Fowles, M., Hadden, R. A., & Ellis, S. R. (2013). Oxygen removal (U.S. Patent
No. US8574328B2). Retrieved June 26, 2023, from https://patents.google.com/patent/US8574328B2/en

Eguchi, H., Kim, D. J., & Koros, W. J. (2015). Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymer, 58, 121–129. https://doi.org/10.1016/j.polymer.2014.12.064

Harlacher, T., & Wessling, M. (2015). Gas–gas separation by membranes. In S. Tarleton (Ed.), Progress in filtration and separation (pp. 557–584). Academic Press.

Neyertz, S., & Brown, D. (2014). The effect of structural isomerism on carbon dioxide sorption and plasticization at the interface of a glassy polymer membrane. Journal of Membrane Science, 460, 213–228. https://doi.org/10.1016/j.memsci.2014.03.002

Sciencing. (n.d.). Ways to remove oxygen from natural gas. Retrieved June 26, 2023, from https://sciencing.com/ways-to-remove-oxygen-from-natural-gas-13637357.html

Yampolsky, Yu., & Freeman, B. (2010). Membrane gas separation. John Wiley & Sons.