Mathematical modeling of a new method for processing a seismic signal on the example of a section of the Saratov right bank. Part 2

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 2 (34)

Title: 
Mathematical modeling of a new method for processing a seismic signal on the example of a section of the Saratov right bank. Part 2


For citation: Fonin, A. A., Suchkov, S. G., Nikolayevtsev, V. A., & Mikheyev, S. I. (2023). Mathematical modeling of a new method for processing a seismic signal on the example of a section of the Saratov right bank. Part 2. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(2), 139–152. https://doi.org/10.21684/2411-7978-2023-9-2-139-152

About the authors:

Anatoly A. Fonin, Postgraduate Student, Department of Geophysics, National Research Saratov State University, Saratov, Russia, fonin.a@mail.ru, https://orcid.org//0000-0002-5049-4243
Sergey G. Suchkov, Dr. Sci. (Phys.-Math.), Professor, Head of the Scientific and Technological Center “Micro- and Nanoelectronics”, National Research Saratov State University, Saratov, Russia, suchkov.s.g@mail.ru
Victor A. Nikolayevtsev, Cand. Sci. (Phys.-Math.), Lead Engineer, Scientific and Technological Center “Micro- and Nanoelectronics”, National Research Saratov State University, Saratov, Russia, nikolaevcev@yandex.ru
Sergey I. Mikheyev, Dr. Sci. (Geol.-Mineral.), Professor, Department of Geophysics, National Research Saratov State University, Saratov, Russia, s.mixeev@gmail.com

Abstract:

This paper presents a new method of seismic exploration with two buried receivers on the same vertical, which helps in comparing the experimental seismogram cleared of non-vertical signals with the calculated theoretical seismogram, which depends on the parameters of the layered structure, such as the thickness of the layers, their density, velocity of propagation of longitudinal acoustic waves in rock, and seismic quality factors of media. The method of least squares aided in the search for the global minimum of the discrepancy function of the calculated and experimental seismic pulse waveforms. The implementation of the algorithm for solving the inverse seismic problem was carried out in the MatLab software package. The construction of a theoretical seismogram includes the calculation of the spectrum of the input impulse, calculation of the frequency dependences of the reflection coefficients and the passage of waves at the interfaces of rocks with different physical parameters, the calculation of the shape of the seismic impulses received by the receivers. A comparison of the calculated and real parameters of the geological structure obtained in the COMSOL Multiphysics software package shows that the developed algorithm results in obtaining a seismogram that practically coincides with the experimental seismogram corresponding to the real rock section, with appropriate geological parameters of media, such as thickness, density and propagation velocity of acoustic waves, as well as quality factors.

References:

COMSOL Multiphysics. (n.d.). Acoustics module. Retrieved April 29, 2020, from https://www.comsol.ru/acoustics-module [In Russian]

Brekhovskikh, L. M. (1973). Waves in layered structures. Nauka. [In Russian]

Dyakonov, V. P. (2005). MATLAB 6.5 SP1/7.0 + Simulink 5/6. Signal processing and filter design. SOLON-Press. [In Russian]

Zatsepin, A. F. (2005). Acoustic control: in 2 parts. Part 1. Introduction to the physics of acoustic control. Ural State Technical University. [In Russian]

Isakovich, M. A. (1973). General acoustics. Nauka. [In Russian]

Kvesko, B. B., & Kvesko, N. G. (2018). Physics of reservoir. Infra-Inzheneriya. [In Russian]

Kontsenebin, Yu. P., Ryskin, M. I., Balabanov, V. G., Mikheyev, S. I., & Korobova, L. A. (1999). Geophysical modeling of oil and gas traps. Proceedings of the Research Institute of Geology of the Saratov State University. New Series. Kolledzh. [In Russian]

Linnik, Yu. V. (1958). The method of least squares and the foundations of the mathematical-statistical theory of processing observations. Fizmatgiz. [In Russian]

Mikhailenko, B. G., & Epov, M. I. (Eds.). (2010). Methods for direct and inverse problems of seismology, electromagnetism, and experimental investigations in problems of studying geodynamic processes in the Earth’s crust and upper mantle. Siberian Branch of the RAS. [In Russian]

Simonchik, K. K., Tropchenko, A. Yu., & Khitrov, M. V. (2012). Digital signal processing. SPbGU ITMO. [In Russian]

Fonin, A. A., Suchkov, S. G., Mikheev, S. I., Nikolaevtsev, V. A., & Suchkov, D. S. (2020). New method of geological profile acoustic parameters determination. Acoustics of the Ocean, 286–293. https://doi.org/10.29006/978-5-9901449-5-8-46 [In Russian]

Fonin, A. A., Suchkov, S. G., Nikolayevtsev, V. A., & Mikheyev, S. I. (2023). Mathematical modeling of a new method for processing a seismic signal on the example of a section of the Saratov right bank. Part 1. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(1), 92–106. https://doi.org/10.21684/2411-7978-2023-9-1-92-106 [In Russian]

Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems (3rd ed.). Elsevier Science. https://doi.org/10.1016/C2015-0-02458-3

Bačić, M., Librić, L., Kaćunić, D. J., & Kovačević, M. S. (2020). The usefulness of seismic surveys for geotechnical engineering in karst: Some practical examples. Geosciences, 10(10), Article 406. https://doi.org/10.3390/geosciences10100406

Bashir, Ya., Babasafari, A. A., Arshad, A. R. M., Alashloo, S. Ya. M., Latiff, A. H. A., Hamidi, R., Rezaei, Sh., Ratnam, T., Sambo, Ch., & Ghosh, D. (2022). Seismic imaging methods and applications for oil and gas exploration. Elsevier Science. https://doi.org/10.1016/C2021-0-00166-8

Bracewell, R. N. (1986). The fourier transform and its applications (2nd ed., revised). McGraw-Hill Book Company.

Di, H., Gao, D., & AlRegib, Gh. (2019). Developing a seismic texture analysis neural network for machine-aided seismic pattern recognition and classification. Geophysical Journal International, 218(2), 1262–1275. https://doi.org/10.1093/gji/ggz226

Monk, D. J. (2020). Survey design and seismic acquisition for land, marine, and in-between in light of new technology and techniques. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560803713

Trofimov, V. L., Khaziev, F. F., & Trofimova, A. V. (2022). Oil and gas reservoir prospecting and exploration: High-resolution seismic (HRS) techniques and technology. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-84389-2

Wang, Ya. (2016). Seismic inversion: Theory and applications. Wiley-Blackwell.

Wei, X., Yang, Z.-F., & Yan, X.-F. (2019). Multi-scale issue in seismic exploration and its research progress. Progress in Geophysics, 34(6), 2353–2360. https://doi.org/10.6038/pg2019DD0239 [In Chinese]