Modeling the spread of an infectious disease with fly-in-fly-out work method

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 2 (34)

Title: 
Modeling the spread of an infectious disease with fly-in-fly-out work method


For citation: Podzolkov, P. N., & Zakharova, I. G. (2023). Modeling the spread of an infectious disease with fly-in-fly-out work method. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(2), 108–127. https://doi.org/10.21684/2411-7978-2023-9-2-108-127

About the authors:

Pavel N. Podzolkov, Postgraduate Student, Department of Software, Institute of Mathematics and Computer Science, University of Tyumen, Tyumen, Russia; p.n.podzolkov@utmn.ru, https://orcid.org/0000-0002-1335-8445
Irina G. Zakharova, Cand. Sci. (Phys.-Math.), Professor, Department of Software, School of Computer Science, University of Tyumen, Tyumen, Russia; i.g.zakharova@utmn.ru, https://orcid.org/0000-0002-4211-7675

Abstract:

The article discusses problems related to building models for the spread of infectious diseases. It explores the relevance of epidemiological modeling in various public spheres, including how production processes can impact disease spread. The article analyzes the possibilities of using compartmental epidemiological models for epidemiological modeling, taking into account population migration and geography. It also considers methods for constructing compartmental models that account for mortality due to the disease. The article proposes an approach to constructing compartmental models that considers population heterogeneity, dividing it into non-overlapping subsets based on contact intensity indicators. Additionally, the article describes a method for modeling migrating subsets within this approach. The article demonstrates the results of constructed epidemiological models for the spread of infection between localities, taking into account migration fly-in-fly-out worker groups. It compares models with different interactions between individuals of subsets and shows that the order of infection spread between subsets affects epidemic dynamics but not the total number of affected individuals. The article also demonstrates that direct contact can accelerate epidemic transmission between subsets compared to transmission through migrating groups. The proposed approach can be used to implement an epidemic simulation system that accounts for migration, geographical factors, and the nature of participant interaction in the production process.

References:

Andreev, D. A., Khachanova, N. V., Stepanova, V. N., Bashlakova, E. E., Evdoshenko, E. P., & Davydovskaia, M. V. (2017). Standardized modeling of the chronic disease progression (review). Health Care Standardization Problems, (9–10), 12–24. http://doi.org/10.26347/1607-2502201709-10012-024 [In Russian]

Eremeeva, N. I. (2021). Numerical modeling of the impact of quarantine measures on the dynamics of the epidemiological process based on the SEIRD model. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 7(2), 170–187. http://doi.org/10.21684/2411-7978-2021-7-2-170-187 [In Russian]

Kondratyev, M. A. (2013). Forecasting methods and models of disease spread. Computer Research and Modeling, 5(5), 863–882. [In Russian]

Puchkov, A. L. (2007). The organization work by the method at the oil and gas extraction enterprises of the Western Siberia. Tomsk State University Journal, (296), 219–222. [In Russian]

Rodkin, M. V., & Punanova, S. A. (2020). The second wave of the coronavirus epidemic — Impact on oil and gas industry, scientific and educational spheres. Uralian Geological Journal, (6), 74–85. [In Russian]

Khanin, G. I., & Fomin, D. A. (2020). Economic consequences of the coronavirus epidemic in Russia amid the world experience. Journal of Economic Regulation, 11(2), 6–18. http://doi.org/10.17835/2078-5429.2020.11.2.006-018 [In Russian]

Yakovlev, S. A. (2017). Infectious diseases as a global problem of our time. Territoriya nauki, (1), 20–23. [In Russian]

Yanchevskaya, E. Yu., & Mesnyankina, O. A. (2019). Mathematical modeling and forecasting in the epidemiology of infectious diseases. RUDN Journal of Medicine, 23(3), 328–334. https://doi.org/10.22363/2313-0245-2019-23-3-328-334 [In Russian]

Araz, O. M., Fowler, J. W., Lant, T. W., & Jehn, M. (2009). A pandemic influenza simulation model for preparedness planning. Proceedings of the 2009 Winter Simulation Conference (WSC), 1986–1995. http://doi.org/10.1109/WSC.2009.5429732

Bichara, D., Iggidr, A., & Sallet, G. (2014). Global analysis of multi-strains SIS, SIR and MSIR epidemic models. Journal of Applied Mathematics and Computing, 44(1), 273–292. https://doi.org/10.1007/s12190-013-0693-x

Brauer, F. (2008). Compartmental models in epidemiology. In F. Brauer, P. van den Driessche, & J. Wu (Eds.), Mathematical Epidemiology (pp. 19–79). Springer. https://doi.org/10.1007/978-3-540-78911-6_2

Calafiore, G. C., Novara, C., & Possieri, C. (2020). A time-varying SIRD model for the COVID-19 contagion in Italy. Annual Reviews in Control, 50, 361–372. https://doi.org/10.1016/j.arcontrol.2020.10.005

Ellison, G. (2020). Implications of heterogeneous SIR models for analyses of COVID-19. NBER Working Paper Series, w27373. https://doi.org/10.3386/w27373

Fernández-Villaverde, J., & Jones, C. I. (2022). Estimating and simulating a SIRD model of COVID-19 for many countries, states, and cities. Journal of Economic Dynamics and Control, 140, Article 104318. https://doi.org/10.1016/j.jedc.2022.104318

Goel, R., & Sharma, R. (2020). Mobility based SIR model for pandemics — With case study of COVID-19. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 110–117. https://doi.org/10.1109/ASONAM49781.2020.9381457

Kermack, W. O., & McKendrick, A. G. (1991). Contributions to the mathematical theory of epi­demics — I. Bulletin of Mathematical Biology, 53(1–2), 33–55. https://doi.org/10.1016/S0092-8240(05)80040-0

Muroya, Y., Enatsu, Y., & Kuniya, T. (2013). Global stability of extended multi-group sir epidemic models with patches through migration and cross patch infection. Acta Mathematica Scientia, 33(2), 341–361. https://doi.org/10.1016/S0252-9602(13)60003-X

Sen, D., & Sen, D. (2021). Use of a modified SIRD model to analyze COVID-19 data. Industrial & Engineering Chemistry Research, 60(11), 4251–4260. https://doi.org/10.1021/acs.iecr.0c04754

Silal, Sh. P., Little, F., Barnes, K. I, & White, L. J. (2016). Sensitivity to model structure: A comparison of compartmental models in epidemiology. Health Systems, 5(3), 178–191. https://doi.org/10.1057/hs.2015.2

Weiss, H. H. (2013). The SIR model and the foundations of public health. MATerials MATematics, 2013(3).