Prediction of the temperature distribution in the reservoir when oil is displaced by a fluid with a temperature different from the reservoir

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 2 (34)

Title: 
Prediction of the temperature distribution in the reservoir when oil is displaced by a fluid with a temperature different from the reservoir


For citation: Vydysh, I. V., Fedorov, K. M., & Shevelev, A. P. (2023). Prediction of the temperature distribution in the reservoir when oil is displaced by a fluid with a temperature different from the reservoir. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 9(2), 6–22. https://doi.org/10.21684/2411-7978-2023-9-2-6-22

About the authors:

Ivan V. Vydysh, Specialist, Tyumen Petroleum Research Center; vydysh3d@gmail.com

Konstantin M. Fedorov, Dr. Sci. (Phys.-Math.), Professor, Professor of the Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; k.m.fedorov@utmn.ru, https://orcid.org/0000-0003-0347-3930

Alexander P. Shevelev, Cand. Sci. (Phys.-Math.), Associate Professor, Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.p.shevelev@utmn.ru; ORCID: 0000-0003-0017-4871

Abstract:

The temperature field is an important factor that must be considered when using thermal methods to intensify oil production. The change in the temperature field is accompanied by a change in the thermophysical properties of reservoir fluids and the entire bottom-hole zone. For example, changes in fluid viscosity, phase transformations or paraffin deposition. The prediction of the thermal field in the reservoir during fluid injection with a temperature other than the reservoir is an important and actual task. All the processes described above are based on the prediction of the temperature field and its evolution. Non-isothermal filtration models embedded in expensive commercial simulators are used to analyze the thermal field in formations, which allow calculating its detailed evolution in geologically complex deposits. However, many tasks are reduced to determining the probability of activation of a particular thermal process in the reservoir. Therefore, the purpose of this work is to develop a simplified model of the evolution of the thermal field in the reservoir during fluid injection with a temperature different from the reservoir. In this paper, the stationary problem of the distribution of fluid temperature in the injection well trunk is solved. An algorithm for determining the heat transfer coefficient by measuring the temperature at the bottom of the well has been developed. A simplified model of the formation of a temperature field in a reservoir during the injection of a fluid with a temperature different from the reservoir in the Lauwerier approximation is formulated. The formula for determining the average value of the heat transfer coefficient along the entire length of the formation is obtained. It is shown that the heat transfer coefficient depends on the thermophysical properties of the injected fluid and the parameters of the injection well operation. It is shown that the absence of measurements of the thermophysical properties of rocks and reservoir fluids leads to predictions of the thermal field with maximum uncertainty in the half of the impact site closest to the injection well.

References:

Basniev, K. S., Vlasov, A. M., Kochina, I. N., & Maksimov, V. M. (1986). Underground hydraulics. Nedra. [In Russian]

Bashirov, V. V., Fedorov, K. M., & Ovsyukov, A. V. (1984). Non-isothermal movement of liquid and gas in porous media and problems of increasing oil recovery by thermal methods. Bashkir State University Publishing House. [In Russian]

Bogoslovskij, V. A., Gorbachev, Yu. I., Zhigalin, A. D., Kalinin, A. V., Popov, M. G., Pushkarev, P. Yu., Modin, I. N., Nikitin, A. A., Nikitin, An. A., Stepanov, P. Yu., & Hmelevskij, V. K. (2018). Geophysics. KDU, Dobrosvet. [In Russian]

Emelyanov, E. V., Zemtsov, Yu. V., & Dubrovin, A. V. (2019). Experience of flow-diverting technologies application under conditions of sharp heterogeneity of productive horizons of Ust-Tegussky field. Oilfield Business, (11), 76–82. https://doi.org/10.30713/0207-2351-2019-11(611)-76-82 [In Russian]

Zemtsov, Yu. V., & Mazaev, V. V. (2021). The current state of physico-chemical methods of increasing oil recovery (literary and patent review). Publishing Solutions. [In Russian]

Koronovskij, N. V., & Yasamanov, N. A. (2011). Geology (7th ed.). Academy. [In Russian]

Lykov, A. V. (1967). Theory of thermal conductivity. High School. [In Russian]

Nigmatulin, R. I. (1987). Dynamics of multiphase media: in 2 parts. Part 1. Nauka. [In Russian]

Ruchkin, A. A., & Yagafarov, A. K. (2005). Optimization of the application of flow-bending technologies at the Samotlorskoye field. Veсtor Buk. [In Russian]

Tihonov, A. N., & Samarskij, A. A. (1977). Equations of mathematical physics (5th ed.). Science. [In Russian]

Arias Buitrago, J. A., Alzate-Espinosa, G. A., Arbelaez-Londono, A., Morales, C. B., Chalaturnyk, R. J., & Zambrano, G. (2016, October 19–20). Influence of confining stress in petrophysical properties changes during thermal recovery in silty sands Colombia [Conference paper SPE-181197-MS]. SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference, Lima, Peru. https://doi.org/10.2118/181197-MS

Bai, B., Liu, Y., Coste, J.-P., & Li, L. (2007). Preformed particle gel for conformance control: Transport mechanism through porous media. SPE Reservoir Evaluation & Engineering, 10(2), 176–184. https://doi.org/10.2118/89468-PA

Caili, D., Qing, Y., & Fulin, Z. (2010). In-depth profile control technologies in China — A review of the state of the art. Petroleum Science and Technology, 28(13), 1307–1315. https://doi.org/10.1080/10916460903419164

Coats, K. H., Thomas, L. K., & Pierson, R. G. (1995). Compositional and black oil reservoir simulation. SPE Reservoir Evaluation & Engineering, 1(4), 372–379. https://doi.org/10.2118/50990-PA

Dahbag, M. S., & Enamul Hossain, M. (April 25–28, 2016). Simulation of ionic liquid flooding for chemical enhance oil recovery using CMG STARS software [Conference paper SPE-182836-MS]. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia. https://doi.org/10.2118/182836-MS

Ghaddab, F., Kaddour, K., Tesconi, M., Brancolini, A., Carniani, C., & Galli, G. (2010, June 8–10). El Borma — Bright Water®: A tertiary method for enhanced oil recovery for a mature field [Conference paper SPE-136140-MS]. SPE Production and Operations Conference and Exhibition, Tunis, Tunisia. https://doi.org/10.2118/136140-MS

Lauwerier, H. A. (1955). The transport of heat in an oil layer caused by the injection of hot fluid. Applied Scientific Research, Section A, 5(2), 145–160. https://doi.org/10.1007/BF03184614

Moussa, T. M., Patil, S., & Mahmoud, M. A. (2018, April 22–26). Performance analysis of a novel heavy oil recovery process using in-situ steam generated by thermochemicals [Conference paper SPE-190074-MS]. SPE Western Regional Meeting, Garden Grove, California, USA. https://doi.org/10.2118/190074-MS

Seright, R. S., & Liang, J. (1995, May 15–16). A comparison of different types of blocking agents [Conference paper SPE-30120-MS]. SPE European Formation Damage Conference, The Hague, Netherlands. https://doi.org/10.2118/30120-MS

Sydansk, R. D., & Romero-Zeron, L. (2011). Reservoir conformance improvement. Society of Petroleum Engineers.