Differential-difference systems in the analysis of weak solvability of initial-boundary value problems with a spatial variable in a network-like domain

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2023. Vol. 9. № 1 (33)

Title: 
Differential-difference systems in the analysis of weak solvability of initial-boundary value problems with a spatial variable in a network-like domain


For citation: Hoang, V. N., & Provotorov, V. V. (2023). Differential-difference systems in the analysis of weak solvability of initial-boundary value problems with a spatial vari­able in a network-like domain. Tyumen State University Herald. Physical and Mathe­matical Modeling. Oil, Gas, Energy, 9(1), 116–138. https://doi.org/10.21684/2411-7978-2023-9-1-116-138

About the authors:

Van Nguyen Hoang, Postgraduate Student, Department of Partial Differential Equations and Probability Theory, Voronezh State University, Voronezh, Russia, fadded9x@gmail.com, https://orcid.org/0000-0001-6970-2770
Vyacheslav V. Provotorov, Dr. Sci. (Phys.-Math.), Professor, Professor of the Department of Partial Differential Equations and Probability Theory, Voronezh State University, Voronezh, Russia, wwprov@mail.ru, https://orcid.org/0000-0001-8761-7174

Abstract:

In the work, the approach and the corresponding methods, which make it possible to construct a priori estimates of weak solutions of a differential-difference system with a spatial variable varying in a multidimensional network-like domain are indicated. Such estimates in spaces of summable functions are used to find solvability conditions for boundary value problems of various types for differential-difference systems. In addition, a priori estimates are used to justify the application of the method of discretization with respect to the time variable (semi-discretization) to the analysis of the weak solvability of initial-boundary value problems and the subsequent construction of approximations of weak solutions. The rationale for the approach used is the fact that in a fairly wide class applied analysis of the problems of transporting continuous media networks-like carriers, the representation of mathematical models of the process using the formalisms of differential-difference systems is the only tool for effectively solving these problems. For example, the reduction of a differential system (initial-boundary value problem) to the corresponding differential-difference system makes it possible not only to significantly simplify the analysis of problems of optimal control of a differential system (since this analysis reduces to studying the problem of optimal control of a system of elliptic equations), but also, using classical methods of control theory for elliptic systems, algorithmize the original problem. The reduction used often facilitates establishing the conditions for the existence and uniqueness of optimal control of a differential system. These problems also include a fairly large range of studies of non-stationary network-like hydrodynamic processes and flow phenomena. As an illustration of the approach used and the results obtained, the analysis of the solvability of the linearized Navier–Stokes system is given and the ways of studying the nonlinear Navier–Stokes system are indicated.

References:

Veremey, E. I., & Sotnikova, M. V. (2011). Plasma stabilization on the base of model predictive control with the linear closed-loop system stability. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, (1), 116–133. [In Russian]

Ladyzhenskaya, O. A. (1973). Boundary value problems of mathematical physics. Science. [In Russian]

Lyons, J. L. (1972a). Optimal control of systems described by partial differential equations. Mir. [In Russian]

Lyons, J. L. (1972b). Some methods for solving nonlinear boundary value problems. Mir. [In Russian]

Aleksandrov, A. Yu., & Zhabko, A. P. (2003). On stability of solutions to one class of nonlinear difference systems. Siberian Mathematical Journal, 44(6), 951–958. https://doi.org/10.1023/B:SIMJ.0000007470.46246.bd

Artemov, M. A., & Baranovskii, E. S. (2019). Solvability of the Boussinesq approximation for water polymer solutions. Mathematics, 7(7), Article 611. https://doi.org/10.3390/math7070611

Artemov, M. A., Baranovskii, E. S., Zhabko, A. P., & Provotorov, V. V. (2019). On a 3D model of non-isothermal flows in a pipeline network. Journal of Physics: Conference Series, 1203, Article 012094. https://doi.org/10.1088/1742-6596/1203/1/012094

Baranovskii, E. S. (2016). Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids. Computational Mathematics and Mathematical Physics, 56(7), 1363–1371. https://doi.org/10.1134/S0965542516070058

Baranovskii, E. S. (2019). Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure and Applied Analysis, 18(2), 735–750. https://doi.org/10.3934/cpaa.2019036

Baranovskii, E. S., Provotorov, V. V., Artemov, M. A., & Zhabko, A. P. (2021). Non-isothermal creeping flows in a pipeline network: Existence results. Symmetry, 13, Article 1300. https://doi.org/10.3390/sym13071300

Kamachkin, A. M., Potapov, D. K., & Yevstafyeva, V. V. (2020). Existence of periodic modes in automatic control system with a three-position relay. International Journal of Control, 93(4), 763–770. https://doi.org/10.1080/00207179.2018.1562221

Provotorov, V. V., & Provotorova, E. N. (2017). Optimal control of the linearized Navier–Stokes system in a netlike domain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13(4), 431–443. https://doi.org/10.21638/11701/spbu10.2017.409

Provotorov, V. V., Sergeev, S. M., & Hoang, V. N. (2021). Point control of a differential-diffe­rence system with distributed parameters on the graph. Vestnik of Saint Petersburg Univer­sity. Applied Mathematics. Computer Science. Control Processes, 17(3), 277–286. https://doi.org/10.21638/11701/spbu10.2021.305