Analysis of theoretical methods for interpretation the non-Newtonian fluids viscosity experimental data

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 4 (32)

Title: 
Analysis of theoretical methods for interpretation the non-Newtonian fluids viscosity experimental data


For citation: Semikhina L. P., Korovin D. D., Semikhin D. V. 2022. “Analysis of theoretical methods for interpretation the non-Newtonian fluids viscosity experimental data”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 4 (32), pp. 95-110.

About the authors:

Lyudmila P. Semikhina, Dr. Sci. (Phys.-Math.), Professor, Institute of Physics and Technology, University of Tyumen; semihina@mail.ru

Daniil D. Korovin, Research Engineer, Department of Applied and Technical Physics, University of Tyumen; danil7b@mail.ru

Dmitry V. Semikhin, Cand. Phys.-Math. Sci., Associate Professor, Department Information Systems, University of Tyumen; assist@inbox.ru

Abstract:

Using a rotary viscometer Brookfield DV-II+Pro, the viscosity of an almost one-component (1-2% impurity) sample of synthanol ALM-7 was studied. In the presented work, this reagent is use as a sample of a highly viscous non-Newtonian fluid and a concentrated micellar disperse system, the particles of the dispersed phase in which are micelles from molecules of this surfactant with dimensions less than 10 nm. Using the example of such a fluid, it is shown that the decrease in viscosity observed in it, typical for dispersed systems, as the shear rate increases, is accompanied by an increase in the activation energy of the viscous flow, which is inconsistent with the Arrhenius and Frenkel equation. The reason is that these equations do not take into account the changes in entropy ∆S during the viscous flow of the non-Newtonian fluid, the value of which actually determines the sign of the change in the viscosity of the non-Newtonian fluid with increasing velocity or shear stress. The only way to calculate ∆S now based on the use of the Eyring equation. However, for the correct calculation of ∆S by the temperature dependence of the dynamic viscosity of the non-Newtonian fluid and the Eyring equation, an independent correct way of finding the value of the preexponent B in this equation is necessary. The article analyzes the methods described in the literature for calculating the values of B, including those proposed by Henry Eyring himself. As a result, it was revealed that only the experimental method we developed for estimating the values of B corresponds to real processes in the non-Newtonian fluid, since only with such calculations does an increase in temperature and shear deformations lead to values of ∆S > 0, indicating the destructive effect of these factors on the non-Newtonian fluid. It is shown that other methods of calculating B can lead to incorrect values of ∆S < 0 and, as a consequence, erroneous conclusions about the processes occurring inside the non-Newtonian fluid.

References:

  1. Boytsova A. A., Kondrasheva N. K., Amro M. 2018. “Analysis and comparison of structural — mechanical properties and thermodynamic characteristics of viscous flow activation of oil dispersed systems of various natures”. Bulletin of the Saint Petersburg State Institute of Technology (Technical University), no. 44 (70), pp. 45-51. DOI: 10.15217/issn1998984-9.2018.44.45 [In Russian]
  2. Boytsova A. A., Kondrasheva N. K., Dolomatov M. Yu. 2017. “Dynamic viscosity and compensation effect in hydrocarbon media with a high content of resins and paraffins”. Journal of Engineering Physics and Thermophysics, vol. 90, no. 6, pp. 1506-1512. DOI: 10.1007/s10891-017-1712-9 [In Russian]
  3. Ganeeva Yu. M., Yusupova T. N., Romanov G. V. 2011. “Asphaltene nano-aggregates: structure, phase transitions and effect on petroleum systems”. Russian Chemical Reviews, vol. 80, no. 10, pp. 993-1008. DOI: 10.1070/RC2011v080nl0ABEH004174 [In Russian]
  4. Glasstone S., Laidler K., Eyring H. 1946. The theory of rate processes the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. Moscow: Foreign Literature. Pp. 461-471. [In Russian]
  5. Dolomatov M. Yu., Kovaleva E. A. 2017. “Relationship study of structurally — mechanical, quantum and structurally — chemistry characteristics of liquid aromatic hydrocarbons”. Butlerov Communications, vol. 52, no. 11, pp. 35-41. DOI: 10.37952/ROI-jbc-01/17-52-11-35 [In Russian]
  6. Zadymova N. M., Skvortsova Z. N., Traskin V. Yu. et al. 2016. “Heavy oil as an emulsion: composition, structure, and rheological properties”. Colloid Journal, vol. 78, no. 6, pp. 675-687.
    [In Russian]
  7. Ishkinin A. A. 2012. “Production of carbon binding materials with specified physicochemical properties”. Cand. Sci. (Tech.) abstract. Ufa. 24 p. [In Russian]
  8. Kirsanov E. A., Matvienko V. N. 2016. Non-newtonian behavior of structured systems. Moscow: TECHNOSPHERE. 384 p. [In Russian]
  9. Kondrasheva N. K., Boitsova A. A. 2017. “Research of quasi-thermodynamic parameters of viscous flow activation of multicomponent hydrocarbon systems”. Advances in Chemistry and Chemical Technology, vol. 31, no. 4, pp. 16-18. [In Russian]
  10. Kondrasheva N. K., Baitalov F. D., Boytsova A. A. 2017. “Comparative assessment of structural and mechanical properties of heavy oils of the Timan-Pechora province”. Notes of the Mining Institute, vol. 225, pp. 320-329. [In Russian]
  11. Rudyak V. Ya. 2015. “Modern status of researches of nanofluids viscosity”. Vestnik Novosibirsk State University. Series: Physics, vol. 10, no. 1, pp. 5-22. [In Russian]
  12. Semikhina L. P., Kovaleva I. V. 2019. “Influence of temperature and shear stress on rheological properties of petroleum and micellar dispersed systems”. Proceedings of the Ufa Scientific Center of the Russian Academy of Sciences, no. 2, pp. 5-14. DOI: 10.31040/2222-8349-2019-0-2-5-14 [In Russian]
  13. Semikhina L. P., Korovin D. D. 2021. “Entropy influence on the dependence of the nanofluids viscosity on temperature and shear rate”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 3 (27), pp. 89-105. DOI: 10.21684/2411-7978-2021-7-3-89-105 [In Russian]
  14. Semikhina L. P., Shtykov S. V. 2022. “Entropy changes in viscous flow of dispersed systems with phase transition in their particles”. Technical Physics Letters, vol. 48, no. 3. DOI: 10.21883/PJTF.2022.17.53277.19213 [In Russian]
  15. Semikhina L. P., Korovin D. D. 2021. “Low-frequency dielectric parameters of water bodies in electric fields of various intensity”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 4 (28), pp. 79-92. DOI: 10.21684/2411-7978-2021-7-4-79-92 [In Russian]
  16. Semikhina L. P., Kovaleva I. V, Demin E. S., Semikhin D. V. 2019. “Analogy of rheological properties and phase transitions in oil and micellar disperse systems”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no. 1, pp. 10-26. DOI: 10.21684/2411-7978-2019-5-1-10-26 [In Russian]
  17. Syunyaev Z. I., Syunyaev R. Z., Safieva R. Z. 1990. Oil dispersed systems. Moscow: Khimiya. 226 p. [In Russian]
  18. Tager A. A., Botvinnik G. O. 1974. “Activation parameters of viscous flow and structure of concentrated polymer solutions”. High-Molecular Compounds, vol. 16, no. 6, pp. 1284-1288. [In Russian]
  19. Unger F. G. Fundamental and applied results of the study of oil dispersed systems. Ufa: Publishing House of SUE IPCP RB. 2011. 264 p. [In Russian]
  20. Frenkel Ya. I. 1975. Kinetic theory of liquids. Leningrad: Nauka. 227 p. [In Russian]
  21. Malkin A. Ya. 2012. Rheology: Concepts, methods and applications. Toronto: ChemTec. 510 p.
  22. Moosavi M., Daneshvar A., Sedghamiz E. 2015. “Rheological properties
    of {[bmim]PF6 + methanol} mixtures at different temperatures, shear rates and compositions”. Journal of Molecular Liquids, vol. 209, no. 1, pp. 693-705. DOI: 10.1016/j.molliq.2015.05.029
  23. Rubio-Hernández F. J., Gómez-Merino A. I., Delgado-García R., Páez-Flor N. M. 2017. “An activation energy approach for viscous flow: A complementary tool for the study of microstructural evolutions in sheared suspensions”. Powder Technology, vol. 308, pp. 318-323. DOI: 10.1016/j.powtec.2016.11.071
  24. Uriev N. B. 2016. Technology of dispersed systems and materials: Physicochemical dynamics of structure formation and rheology. Weinheim: Wiley-VCH. XIV, 178 p.
  25. Yapici K., Osturk O., Uludag Yu. 2018. “Dependency of nanofluid rheology on particle size and concentration of various metal oxide nanoparticles”. Brazilian Journal of Chemical Engineering, vol. 35, no. 2, pp. 575-586. DOI: 10.1590/0104-6632.20180352s20160172