Experimental study of the oscillatory process in cylindrical pipes filled with gas-bubble liquid

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 4 (32)

Title: 
Experimental study of the oscillatory process in cylindrical pipes filled with gas-bubble liquid


For citation: Zaripov F. A., Pavlov G. I., Nakoryakov P. V., Sitnikov O. R. 2022. “Experimental study of the oscillatory process in cylindrical pipes filled with gas-bubble liquid”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 4 (32), pp. 81-94.

About the authors:

Faiz A. Zaripov, Postgraduate Student, Department of Special Technologies in Education, Kazan National Research Technical University named after A. N. Tupolev — KAI (Kazan); zaripovfa@mail.ru

Grigory I. Pavlov, Dr. Sci. (Tech.), Professor, Head of the Department of Special Technologies in Education, Kazan National Research Technical University named after A. N. Tupolev — KAI (Kazan); pavlov16@mail.ru

Pavel V. Nakoryakov, Cand. Sci. (Tech.), Associate Professor, Department of Special Technologies in Education, Kazan National Research Technical University named after A. N. Tupolev — KAI (Kazan); nakorjakov@mail.ru

Oleg R. Sitnikov, Cand. Sci. (Tech.), Associate Professor, Department of Special Technologies in Education, Kazan National Research Technical University named after A. N. Tupolev — KAI (Kazan); halmer169990@mail.ru

Abstract:

In hydraulic systems, undamped oscillations often occur, the frequencies of which coincide with the natural frequencies of the elements of hydraulic systems. The resulting pressure pulsations in the liquid are harmful and can disrupt the operation of hydraulic systems and elements of its automation. The search for ways and methods to reduce the impact of wave and vibration processes on pipelines, as well as the creation of devices that ensure their implementation, is an urgent scientific and technical task. The paper proposes an original method of damping resonant vibrations by feeding gas bubbles into the acoustic circuit. The aim of the work was to evaluate the effectiveness of the proposed method for reducing the sound level in water at the resonant frequencies of the main harmonics and overtones. To test the proposed method, an experimental stand was developed, the resonant frequencies and sound levels in a liquid medium bounded by a pipe closed on one side were determined by an experimental method, the influence of the supplied gas with different volume flow rates on the sound level in the pipe at the resonant frequencies of the main harmonics and overtones was investigated. The experimental results obtained allow us to conclude that the gas supply to a liquid medium leads to a change in the properties of the medium and, as a consequence, to a decrease in the sound pressure level in the liquid from the resonant (natural) oscillation frequencies of cylindrical pipes closed at one end.

References:

  1. Andreeva S. A. 2017. “Innovative methods of diagnostics of heating networks”. Heat Supply News, no. 4 (200), pp. 22-38. [In Russian]
  2. Gubaidullin D. A., Gafiyatov R. N. 2019. “Acoustic waves in viscoelastic bubbly media”. High Temperature, vol. 57, no. 1, pp. 133-136. DOI: 10.1134/S0018151X1806010X
  3. Gubaidullin D. A., Gafiyatov R. N. 2020. “Reflection and transmission of acoustic wave through a multifractional bubble layer”. High Temperature, vol. 58, no. 1, pp. 97-100. DOI: 10.1134/S0018151X20010083
  4. Isakovich M. A. 1973. General acoustics: Study guide. Moscow: Nauka. 495 p. [In Russian]
  5. Molochnikov V. M., Dushina O. A., Paerely A. A., Kolchin S. A. 2011. “Transition to turbulence in a channel with flow separation behind the transversal ribs”. Vestnik of Lobachevsky State University of Nizhni Novgorod, no. 4-3, pp. 988-990. [In Russian]
  6. Nakoryakov V. E., Pokusaev B. G., Schreiber I. R. 1983. Wave propagation in gas- and vapor-liquid media. Novosibirsk: Institute of Thermal Physics. 237 p. [In Russian]
  7. Nigmatulin R. I. 1987. Dynamics of multiphase media: in 2 parts. Part 1. Moscow: Nauka. 464 p. [In Russian]
  8. Raskin A. B. 2004. “Devices for stabilizing pressure and flow fluctuations in heating networks”. Heat Supply News, no. 2, pp. 23-31. [In Russian]
  9. Sunarchin R. A., Mashkov M. A., Matrosov A. V. 2018. “Instability and self-oscillations in electro-hydraulic servo drive”. Journal of Dynamics and Vibroacoustics, vol. 4, no. 3, pp. 16-25. DOI: 10.18287/2409-4579-2018-4-3-16-25 [In Russian]
  10. Fedotovsky V. S., Vereshchagina T. N. 2007. “Low-frequency resonance dispersion of sound in the bubble media”. Thermophysics and Aeromechanics, vol. 14, no. 3, pp. 425-428. DOI: 10.1134/S0869864307030122
  11. Chernyavsky L. I. 2003. Automatic regulation of steam and gas turbines: improving the reliability and accuracy of systems with flow-through hydraulic amplifiers. Saint-Petersburg: Energoteсh. 183 p. [In Russian]
  12. Shagapov V. Sh., Sarapulova V. V. 2015. “Refraction and reflection of sound at the boundary of a bubbly liquid”. Acoustical Physics, vol. 61, no. 1, pp. 37-44. DOI: 10.1134/S1063771014060153
  13. Avdeev A. A. 2016. Bubble systems. Switzerland: Springer. XIX, 466 p.
  14. Temkin S. 2005. Suspension acoustics: An introduction to the physics of suspensions. New York: Cambridge University Press. 398 p. DOI: 10.1017/CBO9780511546129