Calculation of the flow characteristics of the heat carrier in the well considering the flow modes

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 4 (32)

Title: 
Calculation of the flow characteristics of the heat carrier in the well considering the flow modes


For citation: Gilmanov A. Ya., Shevelev A. P., Rodionova A. V. 2022. “Calculation of the flow cha­racteristics of the heat carrier in the well considering the flow modes”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 4 (32), pp. 21-39.

About the authors:

Alexander Ya. Gilmanov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.y.gilmanov@utmn.ru, https://orcid.org/0000-0002-7115-1629

Alexander P. Shevelev, Cand. Sci. (Phys.-Math.), Associate Professor, Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.p.shevelev@utmn.ru; ORCID: 0000-0003-0017-4871

Anna V. Rodionova, Student, Department of Modeling of Physical Processes and Systems, Institute of Physics and Technology, University of Tyumen; stud0000230197@study.utmn.ru

Abstract:

Currently, the problem of depletion of easily recoverable oil reserves is urgent. Such a problem can be solved by involving in the development of fields with hard-to-recover reserves, which include high-viscosity oils. For the development of such deposits, thermal enhanced oil recovery methods are used to reduce the viscosity of oil, increase the inflow into producers. Among such methods, the cyclic steam stimulation is fully used the injected heat into the reservoir. One of the main problems of this method is the need to supply steam to the bottom of the well. This problem is relevant, since production with high water cut is formed in a number of fields as a result of cyclic steam stimulation, which indicates steam condensation even in the borehole. The article describes the construction of a physical and mathematical model of the injection of a heat carrier (steam — water) into the reservoir, considering the movement of it along the wellbore, heat loss through the walls of the well and flow modes for the first time. The aim of the work is to determine the influence of technological parameters on the characteristics of the heat carrier in the well, considering the flow modes. The mathematical model developed in the article is based on the laws of conservation of mass, momentum and energy, the friction pressure losses are calculated using empirical formulas for various flow regimes. The distribution of steam quality over the depth of the well, the influence of technological parameters on the wellhead (steam quality, pressure, heat carrier flow rate at the wellhead and thermal conductivity of thermal insulation) on the parameters of the coolant at the bottom of the well (steam condensation depth and heat carrier flow rate at the bottom) are obtained and analyzed. It is shown that with an increase in the thermal conductivity coefficient of thermal insulation, steam condenses higher along the borehole. It is determined that the higher the flow rate of the heat coolant at the wellhead, the deeper the steam penetrates through the well.

References:

  1. Altshul A. D. 1982. Hydraulic resistances. 2nd ed., revised. Moscow: Nedra. 224 p. [In Russian]
  2. Kostrykin S. 2018. “Steady flow regimes in the problem of intense wind-driven circulation in a thin layer of viscous rotating fluid”. Journal of Experimental and Theoretical Physycs, vol. 127, no. 1, pp. 167-177. DOI: 10.1134/S1063776118070087
  3. Lapin Yu. V., Nekharakina O. A., Strelets M. Kh. 1990. “Semiempirical models of turbulent boundary flow. Steady-state flow in a smooth-walled circular tube”. Fluid Dynamics, no. 25, pp. 189-194. DOI: 10.1007/BF01058966
  4. Lurie M. V. 2017. “Mechanics of horizontal two-phase slug flow in pipeline”. Oil and Gas Territory, no. 7-8, pp. 106-111. [In Russian]
  5. Savchik M. B., Ganeeva D. V., Raspopov A. V. 2020. “Improvement of the efficiency of cyclic steam stimulation of wells in the Upper Permian deposit of the Usinskoye field based on the hydrodynamic model”. Perm Journal of Petroleum and Mining Engineering, vol. 20, no. 2, pp. 137-149. DOI: 10.15593/2224-9923/2020.2.4
    [In Russian]
  6. Skuratov A. S., Fedorov A. V. 1991. “Supersonic boundary layer transition induced by roughness on the attachment line of a yawed cylinder”. Fluid Dynamics, no. 26, pp. 816-822. DOI: 10.1007/BF01056780
  7. Khisamov R. S., Zakharova E. F., Gumerova D. M., Sayakhov V. A. 2018. “An integrated approach to the research of the composition and properties of bituminous oil at the Ashalchinskoye field”. Neftyanoe hozyajstvo, no. 10, pp. 68-71. DOI: 10.24887/0028-2448-2018-10-68-71 [In Russian]
  8. Khovalyg D. M., Baranenko A. V. 2012. “Methods for calculating the pressure gradient of a two-phase flow through small-diameter conduits”. Journal International Academy of Refrigeration, no. 1, pp. 3-10. [In Russian]
  9. Chefranov S. G. 2017. “Energy-optimal time-dependent regimes of viscous incompressible fluid flow”. Fluid Dynamics, no. 2, pp. 36-49. DOI: 10.7868/S0568528117020074 [In Russian]
  10. Al Yousef Z., AlDaif H., Al Otaibi M. 2014. “An overview of steam injection projects in fractured carbonate reservoirs in the Middle East”. Journal of Petroleum Science Research, vol. 3, no. 3, pp. 101-152. DOI: 10.14355/jpsr.2014.0303.01
  11. Basta G, El Ela M. A., El-Banbi A., El-Tayeb S., Desouky S. E. D. M., Sayyouh M. H. 2021. “Semi-analytical model to predict the performance of cyclic steam stimulation oil wells”. Journal of Petroleum Exploration and Production, no. 11, pp. 1993-2007. DOI: 10.1007/s13202-021-01111-7
  12. Chen N. H. 1979. “An explicit equation for friction factor in pipe”. Industrial and Engineering Chemistry Fundamental, vol. 18, pp. 296-297. DOI: 10.1021/i160071a019
  13. Moradi B., Ayoub M., Bataee M., Mohammadian E. 2020. “Calculation of temperature profile in injection wells”. Journal of Petroleum Exploration and Production Technology, vol. 10, pp. 687-697. DOI: 10.1007/s13202-019-00763-w
  14. Pang Z., Jiang Y., Wang B., Cheng G., Yu X. 2020. “Experiments and analysis on development methods for horizontal well cyclic steam stimulation in heavy oil reservoir with edge water”. Journal of Petroleum Science and Engineering, vol. 188, art. 106948, pp. 1-13. DOI: 10.1016/j.petrol.2020.106948
  15. Sun F., Yao Y., Li X. 2018. “Numerical simulation of superheated steam flow in dual-tubing wells”. Journal of Petroleum Exploration and Production Technology, vol. 8, pp. 925-937. DOI: 10.1007/s13202-017-0390-7
  16. Sun F., Yao Y., Li X. 2018. “The heat and mass transfer characteristics of superheated steam in horizontal wells with toe-point injection technique”. Journal of Petroleum Exploration and Production Technology, vol. 8, pp. 1295-1302. DOI: 10.1007/s13202-017-0407-2
  17. Swadesi B., Muraji S. A., Kurniawan A., Widiyaningsih I., Widiyaningsih R., Budiarto A., Aslam B. M. 2021. “Optimizing the development strategy of combined steam flooding and cyclic steam stimulation for enhanced heavy oil recovery through reservoir proxy modeling”. Journal of Petroleum Exploration and Production Technology, vol. 11, pp. 4415-4427. DOI: 10.1007/s13202-021-01301-3
  18. Xiao D., Hu Y., Meng Y., Li G., Wang T., Chen W. 2022. “Research on wellbore temperature control and heat extraction methods while drilling in high-temperature wells”. Journal of Petroleum Science and Engineering, vol. 209, art. 109814, pp. 1-17. DOI: 10.1016/j.petrol.2021.109814