Research on the thermodynamic conditions for the pyrolysis of monosilane in a cyclic compression reactor

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 4 (32)

Title: 
Research on the thermodynamic conditions for the pyrolysis of monosilane in a cyclic compression reactor


For citation: Yezdin B. S., Kalyada V. V., Vasiliev S. A., Shabiev F. K., Pakharukov Yu. V., Safargaliev R. F. 2022. “Research on the thermodynamic conditions for the pyrolysis of monosilane in a cyclic compression reactor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 4 (32), pp. 8-20.

About the authors:

Boris S. Yezdin, Cand. Sci. (Phys.-Math.), Associate Professor, Novosibirsk State University; bse@nsu.ru

Valery V. Kalyada, Leading Electrician, Department of Applied Physics, Physical Faculty, Novosibirsk State University; v.kalyada@nsu.ru

Sergey A. Vasiliev, Chief Engineer of Applied Physics, Faculty of Physics, Novosibirsk State University; svasiljev@mail.ru
Farid K. Shabiev, Cand. Sci. (Phys.-Math.), Associate Professor, University of Tyumen; faridshab@mail.ru

Yuri V. Pakharukov, Dr. Sci. (Phys.-Math.), Professor, University of Tyumen; pacharukovyu@yandex.ru
Ruslan F. Safargaliev, Postgraduate Student, University of Tyumen; ruslan.safargaliev@mail.ru

Abstract:

In this work the pyrolysis of monosilane under adiabatic compression conditions in an argon atmosphere is investigated. Cyclic compression reactor is used to create thermodynamic conditions required for monosilane pyrolysis. It is shown that for the monosilane content in the buffer gas not exceeding 20% the complete pyrolysis occurs in the peak pressure range above 2.5 MPa. The monosilane decomposition into silicon and hydrogen is accompanied by the synthesis of silicon nanoparticles sized 10-150 nm. The maximum size of the particles occurs at 50-60 nm. The particle sizes follow the lognormal distribution which points in favour of the growth mechanism due to the fusion of smaller particles.

References:

  1. Anshakov A. S., Urbakh E. K., Urbakh A. E., Faleev V. A., Cherednichenko V. S. 2017. “Synthesis of silicon carbide nanopowders in a two-jet plasma-chemical reactor”. Thermophysics and Aeromechanics, vol. 24, no. 3, pp. 459-467.
    DOI: 10.1134/S0869864317030131
  2. Vandyshev E. N., Gilinskii A. M., Shamirzaev T. S., Zhuravlev K. S. 2005. “Photoluminescence of silicon nanocrystals under the effect of an electric field”. Semiconductors, vol. 39, no. 11, pp. 1319-1322. DOI: 10.1134/1.2128458
  3. Gusev A. I. 2005. Nanomaterials, nanostructures, nanotechnologies. Moscow: Fizmatlit. 410 p. [In Russian]
  4. Efremov M. D., Volodin V. A., Marin D. V., Arzhannikova S. A., Goryainov S. V., Korchagin A. I., Cherepkov V. V., Lavrukhin A. V., Fadeev S. N., Salimov R. A., Bardakhanov S. P. 2004. “Visible photoluminescence from silicon nanopowders produced by silicon evaporation in a high-power electron beam”. Journal of Experimental and Theoretical Physics Letters, vol. 80, no. 8, pp. 544-547. DOI: 10.1134/1.1846116
  5. Ishchenko A. A., Fetisov G. V., Aslanov L. A. 2011. Nanocremni: Properties, preparation, application, methods of research and control. Moscow: Fizmatlit. 647 p. [In Russian]
  6. Pozdnyakov G. A., Yakovlev V. N., Saprykin A. I. 2014. “Production of nanosized silicon powders by monosilane decomposition in an adiabatic process”. Doklady Physical Chemistry, vol. 456, no. 1, pp. 67-70. DOI: 10.1134/S0012501614050029
  7. Nikiforov A. A. 2010. The method of microarc oxidation: Pat. 2389830 Russian Federation: MPCC25D11/02. No. 2008115739/02; declared 21 April 2008; published 20 May 2010; bull. no. 14. [In Russian]
  8. Cherepanov A. N., Ovcharenko V. E., Liu G., Cao L. 2015. “Modifying structure and properties of nickel alloys by nanostructured composite powders”. Thermophysics and Aeromechanics, vol. 22, no. 1, pp. 127-132. DOI: 10.1134/S0869864314010114
  9. Ezdin B. S., Zarvin A. E., Yaskin A. S., Kalyada V. V., Konovalov S. A. 2016. “Fast cyclic compression installation for conversion of light hydrocarbons”. Chemical and Petroleum Engineering, vol. 52, no. 1, pp. 26-28. DOI: 10.1007/s10556-016-0141-5
  10. Morales-Sánchez A., Barreto J., Domínguez C., Aceves M., Leyva K. M., Luna-López J. A., Carrillo J., Pedraza J. 2010. “Topographic analysis of silicon nanoparticles-based electroluminescent devices”. Materials Science and Engineering: B, vol. 174, no. 1-3, pp. 123-126. DOI: 10.1016/j.mseb.2010.03.030
  11. Vladimirov A., Korovin S., Surkov A., Kelm E., Pustovoy V. 2011. “Synthesis of luminescent Si Nanoparticles using the laser-induced pyrolysis”. Laser Physics, vol. 21, no. 4, pp. 830-835. DOI: 10.1134/S1054660X11080032
  12. Wiggers H., Starke R., Roth P. 2001. “Silicon particle formation by pyrolysis of silane in a hot wall gasphase reactor”. Chemical Engineering and Technology, vol. 24, no. 3, pp. 261-264. DOI: 10.1002/1521-4125(200103)24:3<261::AID-CEAT261>3.0.CO;2-K