Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium mode

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 3 (31)

Title: 
Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium mode


For citation: Shabiev F. K., Pakharukov Yu. V., Safargaliev R. F., Yezdin B. S., Vasiliev S. A. 2022. “Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium mode”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 3 (31), pp. 106-125. DOI: 10.21684/2411-7978-2022-8-3-106-125

About the authors:

Farid K. Shabiev, Cand. Sci. (Phys.-Math.), Associate Professor, University of Tyumen; faridshab@mail.ru

Yuri V. Pakharukov, Dr. Sci. (Phys.-Math.), Professor, University of Tyumen; pacharukovyu@yandex.ru
Ruslan F. Safargaliev, Postgraduate Student, University of Tyumen; ruslan.safargaliev@mail.ru

Boris S. Yezdin, Cand. Sci. (Phys.-Math.), Associate Professor, Novosibirsk State University; bse@nsu.ru

Sergey A. Vasiliev, Chief Engineer of Applied Physics, Faculty of Physics, Novosibirsk State University; svasiljev@mail.ru

Abstract:

Understanding the interaction mechanisms between graphene nanoparticles (GNs) and oil molecules is crucial for successful oil recovery. Numerous studies have shown that nanofluids, and in particular nanofluids (NF) from the graphene family (GNF), are suitable candidates for enhanced oil recovery in various reservoirs. Increased oil recovery from nanofluid injection is attributed to changes in wettability, decreases in interfacial tension and changes in viscosity. Therefore, knowing the mechanisms that influence the viscosity of the GNF is an urgent task of modern science, both fundamental and applied. A comprehensive study of the molecular interaction between graphene nanoparticles and hydrocarbon oil molecules was carried out in order to understand the mechanisms that affect the viscosity of nanofluids. The paper presents the results of a study of the rheological properties of oil with different content of graphene nanoparticles in it. At low concentrations of graphene nanoparticles, a 10%-17% decrease in the dynamic viscosity of the base fluid was observed. It is also shown that the relative viscosity is affected not only by the concentration, but also by the temperature. Thus, for the mass fraction of graphene nanoparticles wt = 0.5 × 10-3% and temperature T = 50 °C, a maximum viscosity reduction of 17% is observed. By increasing the concentration of graphene nanoparticles from wt = 5 × 10-3% and more, the oil shows the rheological properties of nanofluid. Based on the data obtained by computer simulation and direct observation of self-assembly of graphene nanoparticles and hydrocarbon molecules of oil, a mechanism has been proposed to explain the reason for the decrease of viscosity of nanofluid at low concentrations of nanoparticles. It was also shown that this nanofluid behavior is mainly possible for hydrocarbon liquids as base fluid and planar graphene nanoparticles.

References:

1.       Belenkov E. A., Kochengin A. E. 2015. “Structure and electronic properties of crystals consisting of graphene layers L6, L4-8, L3-12 and L4-6-12”. FTT. 57, 2071-2078 (2015). DOI: 10.1134/S1063783415100030 [In Russian]

2.       Kitaygorodsky A. I. 1971. Molecular crystals. Moscow: Nauka. 424 p. DOI: 10.1016/b978-0-12-410550-8.x5001-1 [In Russian]

3.       Nelyubov D. V., Semikhina L. P., Fedorets A. A. 2015. “Research of rheological and low-temperature properties of model solutions of solid components of oil: scientific article”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no. 2 (2), pp. 38-49. [In Russian]

4.       Pakharukov Yu. V., Shabiev F. K., Grigoriev B. V., Safargaliev R. F., Potochnyak I. R. 2019. “Oil filtration in a porous medium with the participation of graphene nanoparticles”. PMTF, vol. 60, no. 1, pp. 37-40. DOI: 10.15372/PMTF20190105 [In Russian]

5.       Pakharukov Yu. V., Shabiev F. K., Mavrinsky V. V., Safargaliev R. F., Voronin V. V. 2019. “Formation of a wave structure on the surface of a graphene film”. JETP Letters, vol. 109, no. 9, pp. 634-638. DOI: 10.1134/S0370274X19090133 [In Russian]

6.       Poluboyartsev E. L., Petrov S. V., Isupova E. V., Chikova N. A. 2014. Peculiarities of anomalous oil transport. Introduction to rheology: textbook. Ukhta: Ukhta State Technical University. 70 p. [In Russian]

7.       Rogachev M. K., Kondrasheva N. K. 2000. Rheology of oil and oil products. Ufa: Ufa State Oil Technical University Publishing House. 89 p. [In Russian]

8.       Sunyaev Z. I., Sunyaev R. Z., Safieva R. Z. 1990. Oil disperse systems. Moscow: Chemistry, 1990. 226 pp. [In Russian]

9.       Khasanov M. M., Bulgakova G. T. 2003. Non-linear and non-equilibrium effects in rheologically complex media. Moscow; Izhevsk: Institute of Computer Research.
288 pp. [In Russian]

10.     Ahmadi M. H., Ghazvini M., Sadeghzadeh M., Nazari M. A., Ghalandari M. 2019. “Utilization of hybrid nanofluids in solar energy applications: A review”. Nano-Structures and Nano-Objects, vol. 20, art. 100386. DOI: 10.1016/j.nanoso.2019.100386

11.     Bahiraei M., Heshmatian S. 2019. “Graphene family nanofluids: A critical review and future research directions”. Energy Conversion and Management, vol. 196, pp. 1222-1256.  DOI: 10.1016/j.enconman.2019.06.076

12.     Basu R., Kinnamon D., Skaggs N., Womack J. 2016. “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension”. Journal of Applied Physics, vol. 119, art. 185107. DOI: 10.1063/1.4949481

13.     Chakarova-Käck S. D., Schröder E., Lundqvist B. I., Langreth D. C. 2006. “Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite”. Physical Review Letters, no. 96, art. 146107.  DOI: 10.1103/PhysRevLett.96.146107

14.     Das S. K., Choi S. U. S., Yu W. 2008. Science and technology. John Wiley and Sons, Inc. Hokoben, New Jersey, United States.

15.     Davidson E., Feller D. 1986. “Basis set selection for molecular calculations”. Chemical Reviews, vol. 86, no. 4, pp. 681-696. DOI: 10.1021/cr00074a002

16.     Ding F., Gao M. 2021. “Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review”. Advances in Colloid and Interface Science, vol. 289, art. 102377.  DOI: 10.1016/j.cis.2021.102377

17.     Esfe M. H., Bahiraei M., Mir A. 2020. “Application of conventional and hybrid nanofluids in different machining processes: A critical review”. Advances in Colloid and Interface Science, vol. 282, art. 102199. DOI: 10.1016/j.cis.2020.102199

18.     Girifalco L. A., Lad R. A. 1956. “Energy of cohesion, compressibility, and the potential energy functions of the graphite system”. The Journal of Chemical Physics, vol. 25, no. 693. DOI: 10.1063/1.1743030

19.     Haisheng Chen, Yulong Ding, Yurong He, Chunqing Tan. 2007. “Rheological behaviour of ethylene glycol based titania nanofluids”. Chemical Physics Letters, vol. 444, iss. 4-6, pp. 333-337.  DOI: 10.1016/j.cplett.2007.07.046

20.     Hajiabadi S. H., Kalateh-Aghamohammadi H. A. M., Shorgasthi M. 2020. “An overview on the significance of carbon-based nanomaterials in upstream oil and gas industry”. Journal of Petroleum Science and Engineering, vol. 186, art. 106783. DOI: 10.1016/j.petrol.2019.106783

21.     Hamze S., Cabaleiro D., Estelle P. 2021. “Graphene-based nanofluids: A comprehensive review about rheological behavior and dynamic viscosity”. Journal of Molecular Liquids, vol. 325, art. 115207. DOI: 10.1016/j.molliq.2020.115207

22.     Hehre W. J., Stewart R. F., Pople J. A. 1969. “Self‐consistent molecular‐orbital methods. Use of Gaussian expansions of slater‐type atomic orbitals”. Journal of Chemical Physics, vol. 51, art. 2657.  DOI: 10.1063/1.1672392

23.     Jongsuk Lee, Yan Chen, Hong Liang, Sunghan Kim. 2021. “Temperature-dependent rheological behavior of nanofluids rich in carbon-based nanoparticles”. Journal of Molecular Liquids, vol. 325, art. 114659. DOI: 10.1016/j.molliq.2020.114659

24.     Malkin A. Ya., Isayev A. 2017. “Chapter 6. Applications of rheology”. Rheology. 3rd edition. ChemTec Publishing. Pp. 377-432. DOI: 10.1016/B978-1-927885-21-5.50012-6

25.     Mercan H. 2020. “Chapter 3. Thermophysical and rheological properties of hybrid nanofluids”. Hybrid Nanofluids for Convection Heat Transfer. Edited by H. M. Ali. Academic Press. Pp. 101-142.  DOI: 10.1016/B978-0-12-819280-1.00003-3

26.     Ning Wang, Guoying Xu, Shuhong Li, Xiaosong Zhang. 2017. “Thermal properties and solar collection characteristics of oil-based nanofluids with low graphene concentration”. Energy Procedia, vol. 105, pp. 194-199. DOI: 10.1016/j.egypro.2017.03.301

27.     Pak B. C., Cho Y. I. 1998. “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”. Experimental Heat Transfer. An International Journal, no. 11 (2), pp. 151-170.  DOI: 10.1080/08916159808946559

28.     Pakharukov Yu. V., Shabiev F. K., Safargaliev R. F., Volkova S. S. 2021. “Quenching of graphene suspension photoluminescence with saturated hydrocarbons”. Colloids and Interface Science Communications, vol. 42, art. 100431.  DOI: 10.1016/j.colcom.2021.100431

29.     Pakharukov Yu. V., Shabiev F. K., Safargaliev R. F. 2018. “Investigating oil displacement from the porous medium with the graphene suspension”. AIP Conference Proceedings 2015, art. 020068.  DOI: 10.1063/1.5055141

30.     Radnia H., Rashidi A., Nazar A. R. S., Eskandari M. M., Jalilian M. 2018. “A novel nanofluid based on sulfonated graphene for enhanced oil recovery”. Journal of Molecular Liquids, vol. 271, pp. 795-806.  DOI: 10.1016/j.molliq.2018.09.070

31.     Rubbi F., Das L., Habib Kh., Aslfattahi N., Saidur R., Ul Alam S. 2021. “A comprehensive review on advances of oil-based nanofluids for concentrating solar thermal collector application”. Journal of Molecular Liquids, vol. 338, art. 116771.  DOI: 10.1016/j.molliq.2021.116771

32.     Rudyak V. Ya., Belkin A. A., Egorov V. V. 2009. “On the effective viscosity of nanosuspensions”. Technical Physics, vol. 54, pp. 1102-1109. DOI: 10.1134/S1063784209080039

33.     Rudyak V. Ya. 2013. “Viscosity of nanofluids. Why it is not described by the classical theories”. Advances in Nanoparticles, vol. 2, pp. 266-279.

34.     Yakasai F., Jaafar M. Z., Bandyopadhyay S., Agi A. 2021. “Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms”. Journal of Industrial and Engineering Chemistry, vol. 93, pp. 138-162. DOI: 10.1016/j.jiec.2020.10.017