Release:
2022. Vol. 8. № 2 (30)About the authors:
Abdulla H. Ebrahim, Cand. Sci. (Phys.-Math.), Junior Researcher, Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; abdulla.ybragim@mail.ru, https://orcid.org/0000-0002-1709-9882Abstract:
A relatively simple mathematical model of dynamic switching of a memristor has been created based on a fairly complete physical model of the processes of stationary mass transfer of oxygen vacancies and ions, considering their generation, recombination and diffusion in electric field in the “metal-oxide-metal” structure with the dominant transport mechanism of electron tunneling through oxygen vacancies.Keywords:
References:
Ebrahim A. H., Udovichenko S. Yu. 2020. “Mathematical modeling of resistive states and dynamic switching of a metal oxide memristor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 2 (22), pp. 127-144. DOI: 10.21684/2411-7978-2020-6-2-127-144 [In Russian]
Alibart F., Zamanidoost E., Strukov D.B. 2013. “Pattern classification by memristive crossbar circuits using ex situ and in situ training”. Nature Communications, vol. 4, art. 2072. DOI: 10.1038/ncomms3072
Basnet P., Pahinkar D. G., West M. P., Perini C. J., Graham S., Vogel E. M. 2020. “Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation”. Journal of Materials Chemistry C, vol. 8, pp. 5092-5101. DOI: 10.1039/c9tc06736a
Bobylev A. N., Udovichenko S. Yu. 2016. “Electrical properties of a TiN/TixAl1 – xOy /TiN memristor device manufactured by magnetron sputtering”. Russian Microelectronics, vol. 45, no. 6, pp. 396-401. DOI: 10.1134/S1063739716060020
Chernov A. A., Islamov D. R., Piknik A. A., Perevalov T. V., Gritsenko V. A. 2017. “Three-dimensional non-linear complex model of dynamic memristor switching”. ECS Transactions, vol. 75, no. 32, pp. 95-104. DOI: 10.1149/07532.0095ecst
Dirkmann S., Kaiser J., Wenger C., Mussenbrock T. 2018. “Filament growth and resistive switching in hafnium oxide memristive devices”. ACS Applied Materials and Interfaces, vol. 10, no. 17, pp. 14857-14868. DOI: 10.1021/acsami.7b19836
Islamov D. R., Gritsenko V. A., Chin A. 2017. “Charge trransport in thin hafnium and zirconium oxide films”. Optoelectronics, Instrumentation and Data Processing, vol. 53, no. 2, pp.184-189. DOI: 10.3103/S8756699017020121
Kuzmichev D. S., Markeev A. M. 2021. “Neuromorphic properties of forming-free non‑filamentary TiN/Ta2O5/Ta structures with an asymmetric current-voltage characteristic”. Nanobiotechnology Reports, vol. 16, no. 6, pp. 804-810.
DOI: 10.1134/S2635167621060136
Matveyev Yu., Kirtaev R., Fetisova A., Zakharchenko S., Negrov D., Zenkevich A. 2016. “Crossbar nanoscale HfO2-based electronic synapses”. Nanoscale Research Letters, vol. 11, art. 147. DOI: 10.1186/s11671-016-1360-6
Mazady А., Anwar М. 2014. “Memristor: Part 1 — The underlying physics and conduction mechanism”. IEEE Transactions on Electron Devices, vol. 61, no. 4. pp. 1054-1061. DOI: 10.1109/TED.2014.2304436
Menzel S., Böttger U., Wimmer M., Salinga M. 2015. “Physics of the switching kinetics in resistive memories”. Advanced Functional Materials, vol. 25, no. 40, pp. 6306-6325. DOI: 10.1002/adfm.201500825
Noman M., Jiang W., Salvador P. A., Skowronski M., Bain J. A. 2011. “Computational investigations into the operating window for memristive devices based
on homogeneous ionic motion”. Applied Physics A, vol. 102, pp. 877-883.
DOI: 10.1007/s00339-011-6270-y
Pahinkar D. G., Basnet P., West M. P., Zivasatienraj B., Weidenbach A., Doolittle W. A., Vogel E., Graham S. 2020.“Experimental and computational analysis of thermal environment in the operation of HfO2 memristors”. AIP Advances, vol. 10, no. 3, art. 035127. DOI: 10.1063/1.5141347
Pisarev A. D., Busygin A. N., Udovichenko S. Yu., Maevsky O. V. 2018. “3D memory matrix based on a composite memristor-diode crossbar for a neuromorphic processor”. Microelectronic Engineering, vol. 198, pp. 1-7. DOI: 10.1016/j.mee.2018.06.008
Pisarev A. D., Busygin A. N., Udovichenko S. Yu., Maevsky O. V. 2020. “A biomorphic neuroprocessor based on a composite memristor-diode crossbar”. Microelectronics Journal, vol. 102, art. 104827. DOI: 10.1016/j.mejo.2020.104827
Pisarev A. D., Busygin A. N., Bobylev A. N., Gubin A. A., Udovichenko S. Yu. 2021. “Fabrication technology and electrophysical properties of a composite memristor-diode crossbar used as a basis for hardware implementation of a biomorphic neuroprocessor”. Microelectronic Engineering, vol. 236, art. 111471. DOI: 10.1016/j.mee.2020.111471
Ryndin E., Andreeva N., Luchinin V. 2022. “Compact model for bipolar andmmultilevel resistive switching in metal-oxide memristors”. Micromachines, vol. 13, no. 1, art. 98. DOI: 10.3390/mi13010098
Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. 2008. “The missing memristor found”. Nature, vol. 453, pp. 80-83. DOI: 10.1038/nature06932
Sungho Kim, ShinHyun Choi, Wei Lu. 2014. “Comprehensive physical model of dynamic resistive switching in an oxide memristor”. ACS Nano, vol. 8, no. 3, pp. 2369-2376. DOI: 10.1021/nn405827t
Sungho Kim, Sae-Jin Kim, Kyung Min Kim, Seung Ryul Lee, Man Chang, Eunju Cho, Young-Bae Kim, Chang Jung Kim, U.-In Chung, In-Kyeong Yoo. 2013. “Physical electro-thermal model of resistive switching in bi-layered resistance-change memory”. Scientific Reports, vol. 3, art. 1680. DOI: 10.1038/srep01680
Yoshihiro Sato, Kentaro Kinoshita, Masaki Aoki, Yoshihiro Sugiyama. 2007. “Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model”. Applied Physics Letters, vol. 90, art. 033503. DOI: 10.1063/1.2431792
Yuzheng Guo, Robertson J. 2014. “Materials selection for oxide-based resistive random access memories”. Applied Physics Letters, vol. 105, art. 223516. DOI: 10.1063/1.4903470
Zeumault A., Alam Sh., Faruk M. O., Aziz A. 2022. “Memristor compact model with oxygen vacancy concentrations as state variables”. Journal of Applied Physics, vol. 131, art. 124502. DOI: 10.1063/5.0087038
Zhuo V. Y.-Q., Jiang Y., Li M. H., Chua E. K., Zhang Z., Pan J. S., Zhao R., Shi L. P., Chong T. C., Robertson J. 2013. “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering”. Applied Physics Letters, vol. 102, art. 062106. DOI: 10.1063/1.4792274