Mathematical modeling of forced oscillations of manometric tubular springs

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2022. Vol. 8. № 2 (30)

Title: 
Mathematical modeling of forced oscillations of manometric tubular springs


For citation: Pirogov S. P., Cherentsov D. A. 2022. “Mathematical modeling of forced oscillations of manometric tubular springs”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 8, no. 2 (30), pp. 183-197. DOI: 10.21684/2411-7978-2022-8-2-183-197

About the authors:

Sergey P. Pirogov, Dr. Sci. (Tech.), Professor, Professor of the Department of Applied Mechanics, Industrial University of Tyumen, Tyumen, Russia; Professor of the Department of Forestry, Woodworking and Applied Mechanics, Northern Trans-Ural State Agricultural University, Tyumen, Russia; piro-gow@yandex.ru, https://orcid.org/0000-0001-5171-8942

Dmitry A. Cherentsov, Cand. Sci. (Tech.), Associate Professor, Associate Professor of the Department of Transport of Hydrocarbon Resources, Industrial University of Tyumen, Tyumen, Russia; cherentsovda@bk.ru, https://orcid.org/0000-0001-8072-6183

Abstract:

Difficult working conditions, as well as vibrations of technological process units and unstable load intensity impose high demands on overpressure monitoring devices that ensure the required measurement accuracy and trouble-free operation of equipment.

The use of pressure gauges today is a mandatory requirement for monitoring overpressure. The main type of pressure gauges uses manometric tubular springs (MTP) as elastic sensing elements. Therefore, the issue of calculating the motion of the MTP under the influence of external variable loads, in particular variable internal pressure, is relevant. Issues related to the influence of internal pressure pulsations and external periodically changing external forces remain unexplored.

For successful operation, the strength and frequency characteristics of vibrations of tubular springs were previously investigated, the effects of cross-sectional shapes and basic geometric dimensions on their vibration characteristics were considered, and the process of vibration damping by liquid was analyzed.

The paper presents a mathematical model of forced oscillations of the MTP based on Lagrange equations of the second kind. The MTP is considered as a mechanical system with two degrees of freedom, that is, defined by two generalized coordinates. They are a relative change in the main angle of the tube and an increase in the small semi-axis of the cross section.

The model allows us to determine the nature of the movement of the MTP under the influence of periodically changing internal pressure. To implement it, a program has been developed in MATLAB, which makes it possible to determine the required characteristics of pressure monitoring devices that exclude the possibility of resonance. With the help of the developed program, the influence of geometric characteristics and internal pressure pulsations on the movements of the free end of the MTP is estimated.

The presented model can be successfully used for dynamic calculations of manometric tubes, since it is a classical approach to solving problems of vibrations of mechanical systems. In addition, it will allow you to calculate the parameters of tubular elastic elements used in various mechanisms as power elements.

References:

  1. Andreeva L. E. 1981. Elastic elements of devices. Moscow: Mashinostroenie. 392 p. [In Russian]

  2. Ustinov N. N., Kokoshin S. N., Smolin N. I. 2011. Russian Federation Patent 2428825 IPC А 01 В 35/20, А 01 В 35/32, А 01 В 39/20 “Working body of the cultivator”. No. 2009136304/21; declared 30 September 2009; published 20 July 2011. Bulletin No. 26. [In Russian]

  3. Ustinov N. N., Kokoshin S. N., Smolin N. I. 2010. Russian Federation Patent 94406 IPC А 01 С 7/20 (2006.01) “Coulter”. No. 2009149569/22; declared 30 December 2009; published 27 May 2010. Bulletin No. 15. [In Russian]

  4. Cherentsov D. A. 2015. “Mathematical modeling of oscillations of manometric tubular springs in a viscous medium”. Cand. Sci. (Tech.) diss. Tyumen. 125 p. [In Russian]

  5. Chuba A. Yu., Smolin N. I., Pirogov S. P. 2007. “Determination of natural vibration frequencies of bent pipes of non-circular cross section”. News of higher educational institutions. Oil and gas, no. 1, pp. 77-82. [In Russian]

  6. Chuba A. Yu. 2007. “Calculation of natural frequencies of oscillations of manometric tubular springs”. Cand. Sci. (Tech.) diss. Tyumen. 37 p. [In Russian]

  7. Yablonsky A. A., Noreiko S. S. 2007. The course of the theory of oscillations: textbook. Allowance. 5th edition, erased. Saint-Petersburg: BHV-Petersburg. 36 p. [In Russian]

  8. Ayvaz Y., Özgan K. 2002. “Application of modified Vlasov model to free vibration analysis of beams resting on elastic foundations”. Journal of Sound and Vibration, vol. 255, no. 1, pp. 111-127. DOI: 10.1006/jsvi.2001.4143

  9. Bergant A., Hou Q., Keramat A., Tijsseling A. S. 2013. “Waterhammer tests in a long PVC pipeline with short steel end sections”. Journal of Hydraulic Structures, vol. 1, no. 1, pp. 24-36. DOI: 10.22055/jhs.2013.10069

  10. Carrier III W. D. 2005. “Pipeline supported on a nonuniform winkler soil model”.
    Journal of Geotechnical and Geoenvironmental Engineering, vol. 131, no. 10.
    DOI: 10.1061/(ASCE)1090-0241(2005)131:10(1301)

  11. Dongquan Wu, Hongyang Jing, Lianyong Xu, Lei Zhao, Yongdian Han. 2018. “Theoretical and numerical analysis of the creep crack initiation time considering the constraint effects for pressurized pipelines with axial surface cracks”.
    International Journal of Mechanical Sciences, vol. 141, pp. 262-275.
    DOI: 10.1016/j.ijmecsci.2018.04.009

  12. Fyrileiv O. 2010. “Effect of internal pressure on free spanning pipelines”.
    Proceedings of the 2010 8th International Pipeline Conference, vol. 3, pp. 711-718.
    DOI: 10.1115/IPC2010-31622

  13. Georgiadou S., Loukogeorgaki E., Angelides D. C. 2014. “Dynamic analysis of a free span offshore pipeline”.  Paper presented at the 24th International Ocean and Polar Engineering Conference. Paper ISOPE-I-14-275.

  14. Guangming Dong and Jin Chen. 2011. “Vibration analysis and crack identification of a rotor with open cracks”. Japan Journal of Industrial and Applied Mathematics, vol. 28, no. 1, pp. 171-182. DOI: 10.1007/s13160-011-0031-3

  15. Haryadi Gunawan Tj, Takashi Mikami, Shunji Kanie, Motohiro Sato. 2006.
    “Free vibration characteristics of cylindrical shells partially buried in elastic foundations”. Journal of Sound and Vibration, vol. 290, no. 3-5, pp. 785-793. DOI: 10.1016/j.jsv.2005.04.014

  16. Kameswara Rao Chellapilla, Simha H. S. 2007. “Critical velocity of fluid-conveying pipes resting on two-parameter foundation”. Journal of Sound and Vibration, vol. 302, no. 1-2, pp. 387-397. DOI: 10.1016/j.jsv.2006.11.007

  17. Kokoshin S., Tashlanov V. 2019. “Automatic rigidity adjuster sustaining tillage depth during the work of cultivators with elastic rods”. IOP Conference Series: Earth and Environmental Science, vol. 403, no. 1. Paper 012002. DOI: 10.1088/1755-1315/403/1/012002

  18. Lottati I., Kornecki A. 1986. “The effect of an elastic foundation and of dissipative forces on the stability of fluid-conveying pipes”. Journal of Sound and Vibration, vol. 109, no. 2, pp. 327-338. DOI: 10.1016/S0022-460X(86)80012-8

  19. Lü Lei, Hu Yujin, Wang Xuelin, Ling Lin, Li Chenggang. 2015. “Dynamical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes”. Nonlinear Dynamics, vol. 79, pp. 2715-2734. DOI: 10.1007/s11071-014-1842-y

  20. Massa A. L. L., Galgoul N. S., Guevara Junior N. O., Fernandes A. C., Coelho F. M., da Silva Neto S. F. 2009. “The influence of internal pressure on pipeline natural frequency”. Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Vol. 3: Pipeline and Riser Technology. Pp. 559-566. DOI: 10.1115/OMAE2009-79666

  21. Naidu N. R., Rao G. V. 1995. “Vibrations of initially stressed uniform beams
    on a two-parameter elastic foundation”. Computers and Structures, vol. 57, no. 5, pp. 941-943. DOI: 10.1016/0045-7949(95)00090-4

  22. Qin Qian, Lin Wang, Qiao Ni. 2008. “Nonlinear responses of a fluid-conveying pipe embedded in nonlinear elastic foundations”. Acta Mechanica Solida Sinica, vol. 21, no. 2, pp. 170-176. DOI: 10.1007/s10338-008-0820-7

  23. Ruocco Eu., di Laora R., Minutolo V. 2016. “An exponential matrix method for the buckling analysis of underground pipelines subjected to landslide loads”. Procedia Earth and Planetary Science, vol. 16, pp. 25-34.

  24. Stojanović V., Petković M. D. 2016. “Nonlinear dynamic analysis of damaged Reddy-Bickford beams supported on an elastic Pasternak foundation”. Journal of Sound and Vibration, vol. 385, pp. 239-266. DOI: 10.1016/j.jsv.2016.08.030

  25. Taolong Xu, Anlin Yao, Hongye Jiang, Youlv Li, Xiangguo Zeng. 2018. “Dynamic response of buried gas pipeline under excavator loading: Experimental/numerical study”. Engineering Failure Analysis, vol. 89, pp. 57-73. DOI: 10.1016/j.engfailanal.2018.02.026

  26. Xü Wan-Hai, Xie Wu-De, Gao Xi-Feng, Ma Ye-Xuan. 2018. “Study on vortex-induced vibrations (VIV) of free spanning pipeline considering pipe-soil interaction boundary conditions”. Journal of Ship Mechanics, vol. 22, no. 4, pp. 446-453.
    DOI: 10.3969/j.issn.1007-7294.2018.04.007 [In Chinese]