Experimental study of the transfer of microparticles in a thin liquid layer under the influence of a temperature gradient

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


2021. Vol. 7. № 2 (26)

Experimental study of the transfer of microparticles in a thin liquid layer under the influence of a temperature gradient

For citation: Al-Muzaiqer M. Y., Flyagin V. M., Obaid Obaid G. L., Ivanova N. A. 2021. “Experimental study of the transfer of microparticles in a thin liquid layer under the influence of a temperature gradient”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 2 (26), pp. 10-26. DOI: 10.21684/2411-7978-2021-7-2-10-26

About the authors:

Mohammed Ali Y. Ali Al-Muzaiqer, Postgraduate Student, Institute of Physics and Technology; Junior Researcher, Research Laboratory of Photonics and Microfluidics, X-BIO, University of Tyumen; m.al-muzajker@utmn.ru

Viktor M. Flyagin, Cand. Sci. (Phys-Math.), Senior Research Associate, Research Laboratory of Photonics and Microfluidics, X-BIO, University of Tyumen; v.m.flyagin@utmn.ru

Gardoon Luqman Obaid Obaid, Master Student, Tyumen Industrial University; Junior Researcher, Photonics and Microfluidics Research Laboratory, X-BIO Institute, University of Tyumen; g.obaid@utmn.ru

Natalya A. Ivanova, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Applied and Technical Physics, Institute of Physics and Technology, Head of Photonics and Microfluidics Research Laboratory, X-BIO Institute, University of Tyumen; eLibrary AuthorID, ORCID, Web of Science ResearcherID, Scopus AuthorID, n.ivanova@utmn.ru


This article studies the main regularities of polyethylene microparticles transfer process in a layer of volatile and non-volatile fluid by thermocapillary currents under local heating and cooling. The authors show the possibility of creating circular and ring-shaped patterns by inducing positive and negative radial-directional temperature gradients.

A methodology and computer program have been developed to quantify the transfer process, consisting in measuring the area of the particle pattern (assembly) formed during heating and the area freed from the particles (cleaning area) during cooling on a sequence of video recording frames obtained with an optical microscope. This technique is based on comparing the intensity of image pixels with respect to a threshold value and counting the total area of pixels occupied or not occupied by particles.

The influence of such experiment parameters as the volume of the carrier fluid (layer thickness), at a constant number of particles, fluid evaporation and the ratio of particle and fluid densities on the size of the resulting pattern and the time of reaching the steady state has been established. The results show that the area of the final pattern during local heating and the clearing area, during local cooling, tends to decrease with increasing layer thickness, while the time of reaching the steady state does not depend on the layer thickness, but depends on the properties of the liquid and the ratio of particle and liquid densities.


  1. Al-Muzaiqer M. Y., Еsenbaev T. E., Kubochkin N. S., Goreva M. D., Ivanova N. A. 2019. “Influence of substrate wettability and air humidity on self-assembly of nanoparticles in evaporating droplets of colloidal solutions”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 3, pp. 83-96. DOI: 10.21684/2411-7978-2019-5-3-83-96 [In Russian]

  2. Abdel Fatah T., Jalali M., Mahshid S. 2018. “A nanofilter for fluidic devices by pillar-assisted self-assembly microparticles”. Biomicrofluidics, vol. 12, no. 6, art. 064103. DOI: 10.1063/1.5048623

  3. Akella M., Juarez J. J. 2018. “High-throughput acoustofluidic self-assembly of colloidal crystals”. ACS Omega, vol. 3, no. 2, pp. 1425-1436. DOI:10.1021/acsomega.7b01862

  4. Angelsky O. V., Bekshaev A. Ya., Maksimyak P. P. et al. 2017. “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation”. Optics Express, vol. 25, no. 5, pp. 5232-5243. DOI: 10.1364/OE.25.005232

  5. Asbahi M., Dong Z., Wang F. et al. 2017. “Second order directed positioning of nanoparticles induced by the main terminal meniscus shape in irregular template cavities”. Nanoscale, vol. 9, no. 28, pp. 9886-9892. DOI: 10.1039/c7nr02455j

  6. Caleap M., Drinkwater B. W. 2014. “Acoustically trapped colloidal crystals that are reconfigurable in real time”. PNAS, vol. 111, no. 17, pp. 6226-6230. DOI:10.1073/pnas.1323048111

  7. Chen Y. L., Liu Z. K., Analytis J. G. et al. 2010. “Single dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family”. Physical Review Letters, vol. 105, no. 26, art. 266103. DOI: 10.1103/PhysRevLett.105.266401

  8. Ding X., Lin S. S., Kiraly B. et al. 2012. “On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves”. Proceedings of the National Academy of Sciences of the United States of America, vol. 28, no. 109, pp. 11105-11109. DOI: 10.1073/pnas.1209288109

  9. Du F., Felts J. R., Xu X. et al. 2014. “Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes”. ACS Nano, vol. 8, no. 12, pp. 12641-12649. DOI: 10.1021/nn505566r

  10. Edwards T. D., Bevan M. A. 2014. “Controlling colloidal particles with electric fields”. Langmuir, vol. 30, no. 36, pp. 10793-10803. DOI:10.1021/la500178b

  11. Feldmann D., Maduar S., Santer M. et. al. 2016. “Manipulation of small particles at solid liquid interface: light driven diffusioosmosis”. Scientific Reports, vol. 6, art. 36443. DOI:10.1038/srep36443

  12. Harris D. J., Lewis J. A. 2008. “Marangoni effects on evaporative lithographic patterning of colloidal films”. Langmuir, vol. 24 (8), pp. 3681-3685. DOI:10.10 21/la8000637

  13. Ivanova N., Starov V. M., Trybala A., Flyagin V. M. 2016. “Removal of micrometer size particles from surfaces using laser-induced thermocapillary flow: experimental results”. Journal of Colloids and Interface Science, vol. 473, pp. 120-125. DOI:10.1016/j.jcis.2016.04.001

  14. Li J., Cabane B., Sztucki M. et al. 2012. “Drying dip-coated colloidal films”. Langmuir, vol. 28, no. 1, pp. 200-208. DOI:10.1021/la203549g

  15. Li Y., Lv C., Li Z., Quere D., Zheng Q. 2015. “From coffee rings to coffee eyes”. Soft Matter, vol. 11, pp. 4669-4673. DOI: 10.1039/C5SM00654F

  16. Lv C., Varanakkottu S. N., Baier T., Hardt S. 2018. Controlling the trajectories of nano/micro particles using light-actuated marangoni flow”. Nano Letters, vol. 18, no. 11, pp. 6924-6930. DOI: 10.1021/acs.nanolett.8b02814

  17. Malinowski R., Volpe G., Parkin I. P., Volpe G. 2018. dynamic control of particle deposition in evaporating droplets by an external point source of vapor”. Journal of Physical Chemistry. Letters, vol 9, no. 3, pp. 659-664. DOI: 10.1021/acs.jpclett.7b02831

  18. Owens C. E., Wyatt Shields IV C., Cruz D. F. et al. 2016. “Highly parallel acoustic assembly of microparticles into well-ordered colloidal crystallites”. Soft Matter, vol. 12, no. 3, pp. 717-728. DOI: 10.1039/c5sm02348c

  19. Shimoni A., Azoubel S., Magdassi S. 2014. “Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by ‘coffee ring effect’”. Nanoscale, vol. 6, no. 19, pp. 11084-11089. DOI: 10.1039/c4nr02133a

  20. Wyatt Shields IV C., Reyes C. D., López G. P. 2015. “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation”. Lab on a Chip, no. 5, pp. 1230-1249. DOI: 10.1039/c4lc01246a