Influence of the copper and steel surfaces’ roughness on surface energy and wettability

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


2021. Vol. 7. № 1 (25)

Influence of the copper and steel surfaces’ roughness on surface energy and wettability

For citation: Islamova A. G., Feoktistov D. V., Orlova E. G. 2021. “Influence of the copper and steel surfaces’ roughness on surface energy and wettability”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 1 (25), pp. 60-78. DOI: 10.21684/2411-7978-2021-7-1-60-78

About the authors:

Anastasia G. Islamova, Postgraduate Student, Butakov Research Center, National Research Tomsk Polytechnic University;; ORCID: 0000-0001-7350-8102

Dmitry V. Feoktistov, Сand. Sci. (Tech.), Associate Professor, Research School of Physics, National Research Tomsk Polytechnic University;

Evgenia G. Orlova, Сand. Sci. (Phys.-Math.), Senior Lecturer, Butakov Research Center, School of Energy and Power Engineering, National Research Tomsk Polytechnic University;


This article aims at solving the fundamental problem of thermal physics. This problem includes controlling small volumes of liquids on the heat exchange surfaces of special devices (for example, thermosyphons and heat pipes) working in a closed evaporative-condensation cycle. The authors analyze the effect of roughness on surface energy and wettability of different textures on typical heat exchange surfaces made of copper and steel prepared for operation by mechanical (abrasive) processing.

Six textures were created on the copper and steel surfaces using a grinding and polishing machine. The roughness of the textures was evaluated based on the analysis of three-dimensional roughness characteristics (amplitude and hybrid). The surface wettability was studied on the experimental setup with the shadow method. The surface free energy of abrasively processed surfaces was determined by the Owens—Wendt—Rabel—Kaelble method.

The results show the necessity of using at least one three-dimensional amplitude and hybrid characteristics to evaluate the textures. The authors have determined the conditions for the formation of Gaussian and sinusoidal textures. A significant increase in surface area is achieved when copper and steel are processed with the abrasive discs with an average grit size of up to 100 μm. This increase is up to 7% for copper and up to 2.7%. After abrasive processing of copper and steel surfaces, the proportion of the polar component in their total surface energy changes. This is a consequence of changes in dipole interactions and hydrogen bonds between atoms.


  1. Aksenov A. F. 2015. Aviation Fuels, Lubricants and Special Fluids: Textbook for Universities. Moscow: Transport. 256 pp. [In Russian]

  2. Batishcheva K. A., Nurpeiis A. E. 2020. “Water droplet evaporation in a chamber isolated from the external environment”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 3, pp. 8-22. DOI: 10.21684/2411-7978-2020-6-3-8-22 [In Russian]

  3. Dedkova A. A., Kireev V. Yu., Makhiboroda M. A. 2020. “Possibilities and limitations of the contact profilometry method for determining the height difference for monitoring topological elements and layer thickness”. Nanostruktury. Matematicheskaya fizika i modelirovanie, vol. 20, no. 2, pp. 23-40. [In Russian]

  4. Karpenko G. V. 1963. Strength of Steel in a Corrosive Environment. Kharkiv: Gosgortekhizdat. 188 pp. [In Russian]

  5. Kuznetsov G. V., Feoktistov D. V., Orlova E. G. 2016. “Regimes of spreading of a water droplet over substrates with varying wettability”. Journal of Engineering Physics and Thermophysics [Inzhenerno-fizicheskiy zhurnal], vol. 89, no. 2, pp. 310‑315 [In Russian]

  6. Leach R. 2012. Fundamental Principles of Engineering Nanometrology. Dolgoprudnyy: Intellekt. 400 pp. [In Russian]

  7. Encinas N., Pantoja M., Abenojar J., Martínez M. A. 2010. “Control of wettability of polymers by surface roughness modification”. Journal of Adhesion Science and Technology, vol. 24, pp. 1869-1883. DOI: 10.1163/016942410X511042

  8. Fowkes F. M. 1962. “Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces”. Journal of Physical Chemistry, vol. 66, p. 382. DOI: 10.1021/j100808a524

  9. Fu B.Q., Liu W., Li Z.-L. 2009. “Calculation of the surface energy of bcc-metals with the empirical electron theory”. Applied Surface Science, vol. 255, pp. 8511-8519. DOI: 10.1016/j.apsusc.2009.06.002

  10. Kilpadi D. V., Lemons J. E. “Surface energy characterization of unalloyed titanium implants”. Journal of Biomedical Materials Research, vol. 28, pp. 1419-1425. DOI: 10.1002/jbm.820281206

  11. Kubiak K. J., Mathia T. G., Wilson M. C. T. 2009. “Methodology for metrology of wettability versus roughness of engineering surfaces”. Proceedings of the 14th International Congress of Metrology in Paris (22-25 June 2009, Paris, France).

  12. Kumar S. S., Hiremath S. S. 2019. “Effect of surface roughness and surface topography on wettability of machined biomaterials using flexible viscoelastic polymer abrasive media”. Surface Topography: Metrology and Properties, vol. 7. DOI: 10.1088/2051-672x/aaf6f6

  13. Kuznetsov G. V., Orlova E. G., Feoktistov D. V., Islamova A. G., Zhuikov A. V. 2020. “Droplet spreading and wettability of abrasive processed aluminum alloy surfaces”. Metals and Materials International, no. 26, pp. 46-55. DOI: 10.1007/s12540-019-00310-6

  14. Kuznetsov G. V., Feoktistov D. V., Orlova E. G., Zykov I. Y., Islamova A. G. 2019. “Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces”. Journal of Colloid and Interface Science, vol. 553, pp. 557-566. DOI: 10.1016/j.jcis.2019.06.059

  15. Kuznetsov G. V., Feoktistov D. V., Orlova E. G., Misyura S. Y., Morozov V. S., Islamova A.G. 2018. “Evaporation modes of LiBr, CaCl2, LiCl, NaCl aqueous salt solution droplets on aluminum surface”. International Journal of Heat and Mass Transfer, vol. 126, pp. 161-168. DOI: 10.1016/j.ijheatmasstransfer.2018.05.040

  16. Neogi P., Miller C. A. 1982. “Spreading kinetics of a drop on a smooth solid surface”. Journal of Colloid And Interface Science, vol. 86, pp. 525-538. DOI: 10.1016/0021-9797(82)90097-2

  17. Owens D. K., Wendt R. C. 1969. “Estimation of the surface free energy of polymers”. Journal of Applied Polymer Science, vol. 13, pp. 1741-1747. DOI: 10.1002/app.1969.070130815

  18. Rioboo R., Marengo M., Tropea C. 2002. “Time evolution of liquid drop impact onto solid, dry surfaces”. Experiments in Fluids, vol. 33, pp. 112-124. DOI: 10.1007/s00348-002-0431-x

  19. Rotenberg Y., Boruvka L., Neumann A.W. 1983. “Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces”. Journal of Colloid And Interface Science, no 93, pp. 169-183. DOI: 10.1016/0021-9797(83)90396-x

  20. Shaker M., Salahinejad E. 2018. “A combined criterion of surface free energy and roughness to predict the wettability of non-ideal low-energy surfaces”. Progress in Organic Coatings, no 119, pp. 123-126. DOI: 10.1016/j.porgcoat.2018.02.028

  21. Šikalo Š., Marengo M., Tropea C., Ganić E.N. 2002. “Analysis of impact of droplets on horizontal surfaces”. Experimental Thermal and Fluid Science, no. 25, pp. 503-510. DOI: 10.1016/S0894-1777(01)00109-1

  22. Wang W., Zhu Y., Cao J., Sun W. 2015. “Correlation between dynamic wetting behavior and chemical components of thermally modified wood”. Applied Surface Science, no. 324, pp. 332-338. DOI: 10.1016/j.apsusc.2014.10.139