Molecular mechanisms of highly polar liquid crystal dielectric polarization

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2021. Vol. 7. № 1 (25)

Title: 
Molecular mechanisms of highly polar liquid crystal dielectric polarization


For citation: Mallaboev U. M., Novoselov V. I., Zaitseva O. S. 2021. “Molecular mechanisms of highly polar liquid crystal dielectric polarization”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 7, no. 1 (25), pp. 44-59. DOI: 10.21684/2411-7978-2021-7-1-44-59

About the authors:

Umardjon M. Mallaboev, Dr. Sci. (Phys.-Math.), Professor, Department of Electric Power, Tyumen Industrial University, Tobolsk Industrial Institute (branch); umallaboev@rambler.ru

Victor I. Novoselov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Natural Sciences and Humanities, Tyumen Industrial University, Tobolsk Industrial Institute (branch); vivnovoselov@yandex.ru

Olga S. Zaitseva, Cand. Sci. (Ped.), Associate Professor, Department of Natural Sciences and Humanities, Tyumen Industrial University, Tobolsk Industrial Institute (branch); teacherolgaz@gmail.com

Abstract:

This article studies the dielectric constants of the nematic ε, ε, and isotropic εis phases of a highly polar liquid crystal of 4-cyanophenyl ether of 4′-n-octyloxybenzoic acid in the megahertz range of electric field frequencies (105-108) Hz, as well as the anisotropy of the dielectric constant Δε = ε − ε. The authors have revealed the relaxation processes and mechanisms responsible for them. In addition, they calculated the relaxation times, dipole polarization activation energy, and deceleration parameters in the nematic phase.

The design of a measuring cell is presented, which allows studying the dielectric constant of the liquid crystal at various orientations of the director (provided by the magnetic field) relative to an alternating electric field with small volumes of matter.

The results show that the dispersion of the dielectric constant in the investigated frequency range of the electric field is characterized by two relaxation processes with τ ~3 ∙ 10−8 s and (τ)в ~ 1,5 ∙ 10−9 s. The dispersion mechanisms are due to the rotation of polar molecules about their short and long axes respectively. The dispersion of the dielectric constant corresponds to the spectrum of relaxation times. The dispersion mechanisms are associated with two relaxation processes: the precession of molecules along a cone within the spatial angle allowed by the value of the order parameter of the liquid crystal S < 1, and the rotation of molecules around the longitudinal axes. The relaxation times corresponding to these mechanisms are commensurate with each other. The dispersion of the dielectric constant in the isotropic phase is characterized by a relaxation process with τis ~ 6 ∙ 10−9 s. The dispersion mechanism is due to the rotation of molecules around short axes.

References:

  1. Belyaev V. V., Ostrovsky B. I., Pikina E. S. 2018. “The 14th European conference on liquid crystals (ECLC 2017), June 25–30, 2017, Moscow”. Liquid Crystals and Their Application, vol. 18, no. 1, pp. 84-91. [In Russian]

  2. Kovshik A. P., Ragimov D. A., Kovshik S. A., Boyko N. I., Lezov A. V., Ryumtsev E. I. 2003. “Dielectric relaxation in melts of carboxylan dendrimers with alkyloxycyanobiphenyl end groups”. Journal of Physical Chemistry, vol. 77, no. 6, pp. 1041-1045. [In Russian]

  3. Mallaboev U. M., Novoselov V. I. 2018. “The effect of through conductivity on the low-frequency dielectric polarization of liquid crystals”. Liquid Crystals and Their Application, vol. 18, no. 1, pp. 24-29. [In Russian]

  4. Ryumtsev E. I., Kovshik A. P., Ragimov D. A., Abbas-zade A. A., Tsvetkov V. N. 1999. “Dielectric relaxation of solutions of liquid crystalline α-cyanstilbene in a nonpolar liquid crystal solvent”. Doklady Akademii Nauk, vol. 366, no. 2, pp. 213-215. [In Russian]

  5. Ryumtsev E. I., Polushin S. G., Tarasenko K. N., Kovshik A. P. 1995. “The equilibrium and dynamic electro-optical properties of the nematic and isotropic phases of 4-n-alkoxy-4-cyanobiphenyls”. Journal of Physical Chemistry, vol. 69, no. 5, pp. 940‑943. [In Russian]

  6. Saburov B. S., Mallaboev U. M., Kovshik A. P., Ryumtsev E. I. 1987. “Molecular mechanisms of the dipole polarization of thermotropic liquid crystals in the radio frequency range”. Doklady Akademii Nauk Tadzhikskoy SSR, vol. 30, no. 2, pp. 99-102. [In Russian]

  7. Kikoin I. K. (ed.). 1976. Tables of Physical Quantities. Directory. Moscow: Atomizdat. 1006 pp. [In Russian]

  8. Tsvetkov V. N. 1970. “On the theory of dielectric anisotropy of nematic liquid crystals”. Bulletin of Leningrad State University, no. 4, pp. 26-37. [In Russian]

  9. Bottcher C. J. 1952. Theory of Electric Polarization. Amsterdam. 490 pp.

  10. Cole K. S., Cole R. H. 1941. “Dispersion and Absorption in Dielectrics: I. Alternating Current Characteristics”. Journal of Chemical Physics, vol. 9, no. 4, pp. 341-351.

  11. Cole K. S., Cole R. H. 1942. “Dispersion and Absorption in Dielectrics: II. Direct Current Characteristics”. Journal of Chemical Physics, vol. 10, pp. 98-105.

  12. Cole R. H. 1955. “On the Analysis of Dielectric Relaxation Measurement”. Journal of Chemical Physics, vol. 23, no. 3, pp. 493-499.

  13. Cole R. H. 1961. “Theory of Dielectric Polarization and Relaxation”. Progress in Dielectrics, vol. 3, pp. 49-100.

  14. Druon G., Wacrenier J. M. 1982. “A Study of 4 Nonanoate 4’ Cyanobiphenyl Using Dielectric Relaxation Method”. Molecular Crystals and Liquid Crystals, vol. 88, pp. 99‑108.

  15. Maier W., Meier G. 1961. “Eine einfache Theorie der dielectrischen Eigenschaften homologen orientierter Kristallinflüssiger Phasen des Nematischen Typs”. Zeitschrift für Naturforschung, vol. 16a, no. 3, pp. 262-267.

  16. Schadt M. 1972. “Dielectric Properties of Some Nematic Liquid Crystals with Strong Positive Dielectric Anisotropy”. Journal of Chemical Physics, vol. 56, no. 4, pp. 1494‑1497.