Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium model

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2020. Vol. 6. № 4 (24)

Title: 
Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium model


For citation: Pakharukov Yu. V., Shabiev F. K., Safargaliev R. F., Yezdin B. S., Kalyada V. V. 2020. “Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium model”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 4 (24), pp. 141-157. DOI: 10.21684/2411-7978-2020-6-4-141-157

About the authors:

Yuri V. Pakharukov, Dr. Sci. (Phys.-Math.), Professor, University of Tyumen; pacharukovyu@yandex.ru
Farid K. Shabiev, Cand. Sci. (Phys.-Math.), Associate Professor, University of Tyumen; faridshab@mail.ru

Ruslan F. Safargaliev, Postgraduate Student, University of Tyumen; ruslan.safargaliev@mail.ru

Boris S. Yezdin, Cand. Sci. (Phys.-Math.), Associate Professor, Novosibirsk State University; bse@nsu.ru

Valery V. Kalyada, Leading Electrician, Department of Applied Physics, Physical Faculty, Novosibirsk State University; v.kalyada@nsu.ru

Abstract:

Graphene, due to its two-dimensional structure, has some unique properties. For example, the thermal conductivity and electrical conductivity of graphene are an order of magnitude higher than the thermal conductivity and electrical conductivity of copper. For this reason, graphene-based nanofluids are now used in many industries. Due to the effect of self-organization of graphene nanoparticles with hydrocarbon molecules, the use of graphene has become possible in the oil industry. Graphene-based nanofluids are used as a displacement fluid to increase the oil recovery coefficient. The displacing ability of graphene-based nanofluids is concentration dependent. An increase in the concentration of nanoparticles entails an increase in viscosity, which negatively affects the performance characteristics of the nanofluid. This problem is partially solved due to the synergistic effect, hybrid nanofluids consisting of nanoparticles of graphene and metals or carbides enhance the displacing ability.

Using atomic force microscopy, scanning electron microscopy and molecular modelling methods, this work has studied the formation of supramolecular structures that form a transition region at the oil-nanofluid interface with low surface tension as a result of a synergistic effect in the interaction of graphene planar nanoparticles and silicon carbide nanoparticles covered with graphene layers (Core-shell). The model experiments on a Hele-Shaw cell have shown that in a porous medium, such hybrid nanofluids have a high displacement ability of residual oil. At the same time, the oil — nanofluid interface remains stable, without the formation of viscous fingers.

During the study by scanning electron microscopy, a transition region was observed, in the structuring of which the nanoparticles were directly involved. The displacement efficiency of a hybrid nonofluid depends on the concentration of nanoparticles and their interaction.

References:

  1. Rudyak V. Ya., Minakov A. V. 2016. Modern Problems of Micro- and Nanofluidics. Novosibirsk: Nauka. 296 pp. [In Russian]

  2. Altunina L. K., Kuvshinov V. A. 2007. “Physicochemical methods for enhancing oil recovery from oil fields”. Russian Chemical Reviews, vol. 76, no. 10, pp. 971-987. DOI: 10.1070/RC2007v076n10ABEH003723

  3. Davidson E. R., Feller D. 1986. “Basis set selection for molecular calculations”. Chemical Reviews, vol. 86, no. 4, pp. 681-696. DOI: 10.1021/cr00074a002

  4. Devendiran D. K., Amirtham V. A. 2016. “A review on preparation, characterization, properties and applications of nanofluids”. Renewable and Sustainable Energy Reviews, vol. 60, pp. 21-40. DOI: 10.1016/j.rser.2016.01.055

  5. Ezdin B., Yatsenko D., Kalyada V., Zarvin A., Ichshenko A., Nikiforov A., Snytnikov P. 2020. “Data on the structure, chemical state of silicon carbide synthesized by adiabatic cyclic compression in a chemical reactor”. Data in Brief, vol. 28, art. 104868. DOI: 10.1016/j.dib.2019.104868

  6. Ezdin B. S., Yatsenko D. A., Kalyada V. V., Ichshenko A. B., Zarvin A. E., Nikiforov A. A., Snytnikov P. V. 2020. “Pyrolysis of a mixture of monosilane and alkanes in a compression reactor to produce nanodispersed silicon carbide”. Chemical Engineering Journal, vol. 381, art. 122642. DOI: 10.1016/j.cej.2019.122642

  7. Hehre W. J., Stewart R. F., Pople J. A. 1969. “Self consistent molecular orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals”. The Journal of Chemical Physics, vol. 51, no. 6, pp. 2657-2664. DOI: 10.1063/1.1672392

  8. Huminic G., Huminic A. 2012. “Application of nanofluids in heat exchangers: a review”. Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 5625-5638. DOI: 10.1016/j.rser.2012.05.023

  9. Kazemi I., Sefid M., Afrand M. 2020. “A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: characterization, stability and viscosity measurements”. Powder Technology, vol. 366, pp. 216-229. DOI: 10.1016/j.powtec.2020.02.010

  10. Leong K. Y., Ong H. C., Amer N. H., Norazrina M. J., Risby M. S., Ahmad K. Z. Ku. 2016. “An overview on current application of nanofluids in solar thermal collector and its challenges”. Renewable and Sustainable Energy Reviews, vol. 53, pp. 1092-1105. DOI: 10.1016/j.rser.2015.09.060

  11. Luo D., Wang F., Zhu J., Cao F., Liu Y., Li X., Willson R. C., Yang Z., Chu C.-Wu, Ren Z. 2016. “Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: high performance at low concentration”. Proceedings of the National Academy of Sciences of the USA, vol. 113, no. 28, pp. 7711-7716. DOI: 10.1073/pnas.1608135113

  12. Martyushev L. M., Birzina A. I. 2014. “Metastability at the displacement of a fluid in a Hele-Shaw cell”. JETP Letters, vol. 99, pp. 446-451. DOI: 10.1134/S0021364014080104

  13. Mehrali M., Sadeghinezhad E., Akhiani A. R., Latibari S. Tahan, Metselaar H. Simon Cornelis, Kherbeet A. Sh., Mehrali M. 2017. “Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field”. Powder Technology, vol. 308, pp. 149-157. DOI: 10.1016/j.powtec.2016.12.024

  14. Friberg S. E., Bothorel P. (eds.). 1987. Microemulsions: Structure and Dynamics. United States: CRC Press.

  15. Moghadam I. P., Afrand M., Hamad S. M., Barzinjy A. A., Talebizadehsardari P. 2020. “Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water”. Physica A, vol. 548, art. 122140. DOI: 10.1016/j.physa.2019.122140

  16. Pakharukov Yu. V., Shabiev F. K., Mavrinskii V. V., Safargaliev R. F., Voronin V. V. 2019. “Formation of a wave structure on the surface of a graphene film”. JETP Letters, vol. 109, pp. 615-619. DOI: 10.1134/S002136401909011X

  17. Pakharukov Yu. V., Shabiev F. K., Safargaliev R. F. 2018. “Oil Displacement from a porous medium with the aid of a graphite suspension”. Technical Physics Letters, vol. 44, no. 2, pp. 130-132. DOI: 10.1134/S1063785018020268

  18. Pakharukov Yu. V., Shabiev F. K., Grigoriev B. V., Safargaliev R. F., Potochnyak I. R. 2019. “Oil filtration in a porous medium in the presence of graphene nanoparticles”. Journal of Applied Mechanics and Technical Physics, vol. 60, no. 1, pp. 31-34. DOI: 10.1134/S002189441901005X

  19. Parrinello R. Car M. 1986. “Unified approach for molecular dynamics and density-functional theory”. Physical Review Letters, vol. 55, no. 22, pp. 2471-2474. DOI: 10.1103/PhysRevLett.55.2471

  20. Peng B., Zhang L., Luo J., Wang P., Ding B., Zeng M., Cheng Z. 2017. “A review of nanomaterials for nanofluid enhanced oil recovery”. RSC Advances, vol. 10, no. 72, pp. 32246-32254. DOI: 10.1039/C7RA05592G

  21. Radnia H., Nazar A. Reza Solaimany, Rashidi A. 2017. “Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology”. Journal of the Taiwan Institute of Chemical Engineers, vol. 80, pp. 34-45. DOI: 10.1016/j.jtice.2017.07.033

  22. Ranga Babu J. A., Kumar K. Kiran, Rao S. Srinivasa 2017. “State-of-art review on hybrid nanofluids”. Renewable and Sustainable Energy Reviews, vol. 77, pp. 551-565. DOI: 10.1016/j.rser.2017.04.040

  23. Rashidi A., Nazar A. Reza Solaimany, Radnia H. 2018. “Application of Nanoparticles for Chemical Enhanced Oil Recovery”. Iranian Journal of Oil & Gas Science and Technology, vol. 7, no. 1, pp. 1-19.

  24. Rostami S., Nadooshan A. Ahmadi, Raisi A. 2020. “The effect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol”. Journal of Thermal Analysis and Calorimetry, vol. 139, pp. 2353-2364. DOI: 10.1007/s10973-019-08569-y

  25. Rudyak V. Ya. 2013. “Viscosity of nanofluids. Why it is not described by the classical theories”. Advances in Nanoparticles, vol. 2, no. 3, pp. 266-276. DOI: 10.4236/anp.2013.23037

  26. Sadeghinezhad E., Mehrali M., Saidur R., Mehrali M., Latibari S. Tahan, Akhiani A. R., Metselaar H. S. C. 2016. “A comprehensive review on graphene nanofluids: recent research, development and applications”. Energy Conversion and Management, vol. 111, pp. 466-487. DOI: 10.1016/j.enconman.2016.01.004

  27. Said Z., Abdelkareem M. Ali, Rezk H., Nassef, Zeyad H. Atwany 2020. “Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach”. Powder Technology, vol. 364, pp. 795-809. DOI: 10.1016/j.powtec.2020.02.026

  28. Saidur R., Leong K. Y., Mohamm H. A. 2011. “A review on applications and challenges of nanofluids”. Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1646-1668. DOI: 10.1016/j.rser.2010.11.035

  29. Siddiqui F. R., Tso C. Y., Fu S. C., Qiu H. H., Chao C. Y. H. 2020. “Evaporation and wetting behavior of silver-graphene hybrid nanofluid droplet on its porous residue surface for various mixing ratios”. International Journal of Heat and Mass Transfer, vol. 153, art. 119618. DOI: 10.1016/j.ijheatmasstransfer.2020.119618

  30. Solangi K. H., Kazi S. N., Luhur M. R., Badarudin A., Amiri A., Sadri R., Zubir M. N. M., Gharahkhani S., Teng K. H. 2015. “A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids”. Energy, vol. 89, pp. 1065-1086. DOI: 0.1016/j.energy.2015.06.105

  31. Sun X., Zhang Y., Chen G., Gai Z. 2017. “Application of nanoparticles in enhanced oil recovery: a critical review of recent progress”. Energies, vol. 10, no. 3, art. 345. DOI: 10.3390/en10030345

  32. Vallejo J. P., Sani E., Zyla G., Lugo L. 2019. “Tailored silver/graphene nanoplatelet hybrid nanofluids for solar applications”. Journal of Molecular Liquids, vol. 296, art. 112007. DOI: 10.1016/j.molliq.2019.112007

  33. Yarmand H., Gharehkhani S., Shirazi S. Farid Seyed, Amiri A., Montazer E., Arzani H. Khajeh, Sadri R., Dahari M., Kazi S. N. 2016. “Nanofluid based on activated hybrid of biomass carbon/graphene oxide: synthesis, thermo-physical and electrical properties”. International Communications in Heat and Mass Transfer, vol. 72, pp. 10-15. DOI: 10.1016/j.icheatmasstransfer.2016.01.004